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Abstract

Empirical science needs to be based on facts and claims that can be reproduced. This calls
for replicating the studies that pronounce the claims, but practice in many fields does not
implement this idea. When such studies emerged in the past decade, the results were
generally disappointing. There have since been an overwhelming number of papers
addressing the “reproducibility crisis” in the last 17 years. Nevertheless, terminology is not
yet settled, and there is no consensus about when a replication should be called successful.
This paper intends to clarify such issues.

A fundamental problem in empirical science is that usual claims only state that effects
are non-zero, and such statements are scientifically void. An effect must have a relevant size
to become a reasonable item of knowledge. Therefore, estimation of an effect, with an
indication of precision, forms a substantial scientific problem, whereas testing it against zero
does not. A relevant effect is one that is shown to exceed a relevance threshold. This
paradigm has implications for the judgement on replication success.

A further issue is the unavoidable variability between studies, called heterogeneity in
meta-analysis. Therefore, it is of little value, again, to test for zero difference between an
original effect and its replication, but exceedance of a corresponding relevance threshold
should be tested. In order to estimate the degree of this variability, more than one
replication is needed, and an appropriate indication of the precision of an estimated effect
requires such an estimate.

These insights show the complexity of obtaining solid scientific results, implying the need
for a strategy to make replication happen.

1 Introduction 1

Science is supposed to be based on facts that are reproducible: If the same phenomenon is 2

studied again with the same methods, the results should be the same. Even though such 3

validation is considered essential for the establishment of sound knowledge, it is not 4

commonly performed in many fields of science. The term reproducibility in a wide sense 5

encompasses all kinds and steps of validation (Section 2). In empirical science, claims are 6

based on data subject to random variation. Performing a whole study again is called a 7

replication, and such projects have been rare in most fields. (For psychology, see [1].) 8

The literature on replicability focusses on studies assessing a quantitative or qualitative 9

“effect,” and this will also be the topic here. 10

1.1 The replication crisis 11

In the last seventeen years, there have been ample studies that found replications to fail in 12

too many instances, and this experience has lead to such a vast literature that we limit 13

ourselves to citing the book by the National Academies of Sciences, Engineering and 14

Medicine [2] for a general introduction. 15
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A wealth of papers have argued and speculated about the reasons for the widespread 16

failure of replicability. Considering empirical research, this author is convinced that the 17

dominant cause in many fields is the so-called selective reporting bias (or, more simply, 18

selection bias, [3, p.1328]) at various levels, such as: 19

• Data dredging, P hacking and HARK-ing, that is, Hypothesizing After the Results are 20

Known (Acad. Med. Sci., 2015, and others): searching for patterns without a 21

pre-conceived question or hypothesis, picking the most salient ones, and then 22

formulating a statistical hypothesis for the most salient one(s), followed by formal 23

statistical testing; 24

• garden of forking paths [5] or researcher degrees of freedom [6]: selecting, among 25

different possibilities of analyzing the data, the one that gives the largest effect; 26

• reporting bias [7], including confirmation bias [8]: focussing on the effects that appear 27

most significant and plausible; and 28

• publication bias: journals and their readers are interested in significant effects and 29

therefore, these get published and achieve attention, even if they were the result of 30

chance and correspond to the testing error of the first kind. 31

They all reflect a way of selecting, among several potential results, those that are 32

statistically most signifikant, and therefore, effects that are estimated, by chance, stronger 33

than their true values are, will have a larger likelihood to be documented in publications. 34

Thus, effects in publications of “original studies” tend to be larger (in absolute value) than 35

the potential true effects they claim to estimate, and consequently, their nominal statistical 36

significance is (much) more pronounced than it should be. Clearly, this bias is enhanced for 37

studies with low statistical power [9]. 38

The high need for new topics for publications, including Ph.D. projects, has lead to an 39

inflation of studies that do not examine clearly relevant and plausible scientific questions. 40

The tactic is to collect some data and search for patterns in many ways in order to find any 41

that appear statistically significant. While such exploratory analyses may play a positive role 42

in the advancement of science and lead to surprising discoveries, the effects found in this 43

manner suffer from selective reporting bias and therefore need independent confirmation. 44

Comments on the crisis of reproducibility often complain about mediocre quality, lack of 45

education leading to inadequate experimental and statistical procedures, and low statistical 46

power, see [10] for a review. These aspects may lead to even more blind exploration 47

entailing higher selective reporting biases, but are otherwise not related to replicability. 48

In the famous paper on “Estimating the reproducibility of psychological science” [11], 49

abbreviated as OSC15 in the sequel, 223 scientists were involved in replicating 100 50

statements about an effect of some sort that had been published in high ranking 51

psychological journals. Among the 97 effects that had been statistically significant in the 52

original study, 35 reached significance in the same direction in the replication. This result 53

was received as a shock, documenting the crisis in empirical science. [12] (and papers cited 54

there) put the results into perspective. In the meantime, there have been several similar 55

attempts to obtain rates of successful replication, see [13], [14], [15], [16], [17], [18]. 56

We do not discuss the important aspects of Good Practice in empirical research in 57

general here, see [19] and their summary (their Table 1). For broad discussions about 58

reproducibility, mostly in the sense of successful replication, 59

see [19], [20], [21], [22], [23], [3], [24], as well as the “consensus report” of the U.S. 60

National Academies of Sciences, Engineering, and Medicine [2] with its broad view on Best 61

Practices in the scientific process. 62
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1.2 The generic case 63

A generic problem consists of assessing the difference between two groups of values of a 64

continuous target variable, the groups referring to different situations or treatments. The 65

difference is interpreted as the effect of the situation or treatment. This problem will be 66

used as the basic example when introducing concepts and criteria below. 67

There are, of course, plenty of other ways in which data can lead to or confirm 68

knowledge. The majority of well-posed scientific problems leads to measuring or observing a 69

target variable (or sometimes more than one) in different situations determined by 70

“explanatory” or “input” variables. The interest is again in effects of the latter variables on 71

the target. Concepts and criteria should easily generalize to such situations. 72

While estimation of one or several effects is the central paradigm for which 73

reproducibility is widely discussed, other types of statistical problems, like prediction, model 74

development, or search for potential causal relationships in big data, are neglected, see [25]. 75

1.3 Focus of this paper 76

A first topic of this paper is based on the observation that the discussions have suffered from 77

a lack of common language. Even the term “reproducibility” has been used to name specific 78

aspects of validation. And what does it mean to say “This claim has not been reproduced”? 79

Was the analysis of the data misguided in the first place? Has replication of the study not 80

been possible or not been tried? Have the results of a replication shown ambiguous or even 81

contradictory results? Here, we try to establish clear terminology, building on the different 82

earlier proposals from different fields of research and models of the scientific process. 83

A second point is the assessment of success of a replication study. Clearly, when a 84

replication study is undertaken to validate a claim found in an empirical study, one must 85

expect the new data to lead to non-identical results due to random variability. When is such 86

a replication successful? In the literature, a popular but criticized criterion consists of 87

finding a statistically significant effect again. Otherwise, the answer is often left to vague 88

formulations such as “consistent effect sizes,” “consistent measures of statistical 89

significance,” or “the results [should be] within the range of values predicted by estimates 90

from the original study” (see, e.g, [26]). Anderson and Maxwell [27] distinguish between 91

different goals of replication and define the respective criteria for success. We will discuss 92

and introduce precise notions and a classification of results that goes beyond a simple binary 93

answer in Section 4. The lack of criteria has lead to disputes about the interpretation of 94

replication studies, diagnosed as a “war” by Ioannidis [28]. 95

A fundamental issue is the perversion of scientific reasoning mentioned above, consisting 96

of a search for patterns in data and subsequently treating the most salient ones by the 97

statistical inference tools that are adequate for testng pre-conceived hypotheses. The road 98

that leads to scientific knowledge starts from a clear scientific question or hypothesis and 99

then chooses the experiment or observation study and the statistical tools to find the 100

answer. Now, a suitable question asks if there is a certain effect of interest. We argue that 101

since there is almost always at least a tiny effect, the question needs to be enhanced by 102

specifying a threshold of relevance. This leads to shifting the focus away from testing to 103

estimation (Section 3). This issue concerns empirical studies in general, but also affects the 104

interpretation of replication results specifically. 105

Another fundamental issue in empirical science emerges from the experience that there is 106

generally a variability of results that goes beyond the exptected statistical variation 107

stemming from the randomness of the single observations. No replication study exactly 108

mimiks the original, and assuming that the new observations are independent realizations 109

from precisely the same distribution as the original ones is an over-simplification. A 110

reasonable model postulates a “between study variance component” in addition to the 111

variance of observations within the same study. It is called the random effects model in 112
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meta-analysis (Section 4.5). As a consequence, more than one replication is needed to 113

assess the precision of an effect estimate adequately. 114

These considerations show the complexity of the basic and seemingly simple task of 115

assessing an effect. The final sections 5 and 6 add thoughts about ways to overcome the 116

difficulties. 117

2 Terminology 118

As mentioned above, terms used in discussions about reproducibility are sometimes unclear 119

or ambiguous. Here, we collect them in best agreement with the literature as far as there is 120

a widespread common understanding and mention alternative meanings. Words in slanted 121

font are meant to be used as terms with the given meaning. 122

Reproducibility. The term reproducibility should not be used in a specific sense but 123

rather left as a name for the theme, that is, it should encompass all aspects of examination 124

of the reliability and relevance of a scientific claim or statement. 125

As mentioned in the Introduction, we focus on the situation where a scientific claim 126

resulting from an original study is examined by conducting a validation study. An empirical 127

study typically consists of the following steps, which may or may not be copied as far as 128

possible in the validation study (see also the Supplement of [23]). 129

1. Specification of the scientific hypothesis or claim with a supposed domain of validity 130

(like population, conditions, ranges of specified variables). Often, a replication only 131

picks up a part of the original study. 132

2. Design of an experiment or specification of observation units, like subjects, animals, 133

plots. 134

3. Tools: Auxiliary material, measurement devices, experimenter or observer. These may 135

show batch or calibration effects, temporal variations, and environmental influences. 136

4. Generation of the data. 137

5. Data cleaning. 138

6. Statistical model and procedure of analysis. 139

7. Selection and presentation of results. 140

8. Interpretation. 141

Transparency, Re-assessment. All these steps should be documented well enough to 142

allow for copying them as far as possible. This includes public availability of the data and 143

the code to repeat the formal results, typically the output of statistical methods. We call 144

this aspect the transparency of the steps. (Nosek et al. [29] label it process reproducibility, 145

and Seibold et al. [30], computational reproducibility.) The steps should be verified in peer 146

re-assessments of publications, and the result should be positive—a confirming 147

re-assessment. The actual re-computation might also be called a verification [10] of the 148

analysis. 149

In computer science and related applications, the term “reproducibility” has been used 150

for this aspect, leading to “reproducible research” [31], [32]. Alternatively, we may call it 151

transparent research. 152

Remark 1 In fact, this restricted meaning has lead to detrimental confusion, when the 153

“reproducibility crisis” was interpreted as a problem of mistakes or ambiguities in applying 154

statistical software. Therefore, the term reproducibility should definitely be used in the 155

wide—and vague—sense encompassing the whole theme of validation of scientific results. 156
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Re-analysis. Some steps from “data” to “interpretation” may be subject to criticism, or 157

alternatives may be available. Then, a re-analysis may be appropriate as a validation of the 158

claim of the original study. A new analysis may use the data for reaching new claims in the 159

spirit of an exploratory study. 160

Replication. When the experiment or the observation campaign is done again to obtain 161

new data—that is, steps “design” to “data generation” are again executed in the same 162

way—the study is called a repetition if it is done by the same team with the same set of 163

tools. Such a repetition should usually be published as part of an original study. If a 164

different team sets up the same experiment or observes according to the same plan, it leads 165

to a (“independent”) replication, more precisely, a direct or close replication. 166

The term replicability is generally used in an unfortunate because misleading way. The 167

literal meaning clearly is the feasibility of replication, without any specification of the result. 168

A statement like “This paper (or claim) is not replicable” might (and should) mean that 169

there is not enough documentation or that the nature of the phenomenon does not allow for 170

a repetition (like the Big Bang), but it usually means that there has been a replication study 171

that failed to find the same result. One should therefore state if a replication of a claim is 172

feasible and whether the result is a confirmation, a failed confirmation, or even a 173

contradiction. We come back to this assessment of the result in Section 4 and in the 174

conclusions. 175

Robustness, generalization, extension. It may be informative to examine whether 176

scientific conclusions remain unchanged when experimental methods or schemes of 177

observation are varied, or alternative data cleaning and statistical methods are used. This 178

desired stability has been called robustness by Goodman et al. [33]. Since this word has 179

many meanings throughout science, it is recommendable to specify the steps (2, 3, 5, 6) 180

towards which the validatoin is tuned. 181

More broadly, the degree to which a scientific claim remains valid if conditions and 182

populations different from those in the original study is of interest, Corresponding studies 183

modify steps “design” to “data generation” and are called generalization studies. 184

Similarly, a conceptual replication is a study to assess the validity of a claim under 185

different circumstances, for other populations, or using alternative methods of measurement, 186

thus varying the first three steps. The “conceptual replication” has been practiced in 187

psychology in order to derive psychological “constructs” (like measures of dimensions of 188

intelligence) and to confirm relations between these using different questionnaires or tests. 189

An extension study would also extend the scientific claim itself. 190

Further literature about terminology. Patil et al. [23] propose terms that are mostly 191

similar to ours. They distinguish between a “replicable study” which means that the 192

estimates of parameters are compatible, and a “replicable claim,” for which the scientific 193

conclusion is confirmed by the replication. 194

Goodman et al. [33] introduce a distinction between 195

• “methods reproducibility,” which corresponds to our “transparency” and to 196

reproducibility as used in computational sciences, 197

• “results reproducibility,” which corresponds to confirming replication, and 198

• “inferential reproducibility,” defined as “making knowledge claims of similar strength 199

from a study replication or reanalysis.” 200

For further elaborations on terminology, see [23], [24], [33], [10]. 201
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3 Estimation, not “zero hypothesis” testing 202

It is common practice in most fields of empirical research to report effects if and only if they 203

are statistically significantly different from zero. This habit of “Null Hypothesis Statistical 204

Testing (NHST)” has been critized since it has emerged in the literature, but has lead to 205

more intense controversy in the last decades. Since the p-value is usually given as a 206

summary of the test’s outcome, the discussion is also named the “p-value debate.” In a 207

preceding paper [34], this author has treated the issue in depth and suggested a simple way 208

to deal with it. Here is a summary. 209

To fix ideas, consider a paired sample study, in which two treatments are applied to each 210

of n observation units. The effect is measured by the average of the n differences Di of a 211

target variable for the two treatments. The parameter of interest, θ, is the expected value of 212

the Di’s. The classical test for the null hypothesis of zero difference is the paired samples 213

t-test, that is, the one-sample t-test on the differences Di. The confidence interval is the 214

t-interval corresponding to this test. 215

Remark 2 Note that in practice, it is preferable to use the Wilcoxon signed rank test and 216

the corresponding confidence interval. The t test and interval are nevertheless still more 217

often used, and they generalize to other situations easily. 218

In a general case, there is a model for n observations Yi, containing a parameter θ of 219

interest. In most cases, a suitable estimator θ̂, like the maximum likelihood estimator, follows 220

aprroximately a normal distribution, θ̂ ∼ N(θ, V/n), where V is the asymptotic variance. 221

The essential argument against NHST runs as follows (see also [35]). 222

The Zero Hypothesis Testing Paradox. Testing an effect against zero does not answer 223

a scientifically meaningful question. When a study is undertaken to find some difference 224

between groups or some influence between variables, the true effect θ will never be precisely 225

zero. Therefore, the strawman null hypothesis of zero true effect (the “zero hypothesis”) 226

could in almost all reasonable applications be rejected if one had the patience and resources 227

to obtain enough observations. Consequently, the question that is answered mutates to: 228

“Did we produce sufficiently many observations to prove the (alternative) hypothesis that 229

was true on an apriori basis?” This does not seem to be a fascinating task. This paradox 230

has been stated prominently as a problem in the philosophy of science over fifty years ago in 231

a highly cited long paper by Meehl [36]. 232

Remark 3 Researchers have taken the paradox into account by refraining from “too large” 233

samples, thereby avoiding that tiny effects become significant. This pragmatic behavior 234

nevertheless appears difficult to justify rationally. 235

Parametric models. The scientifically justified question is therefore: “How large is the 236

effect?” The question makes sense only if the parameter is part of a model that describes 237

the phenomenon under study. It can be asked independently of a design of an experiment or 238

obbervation scheme that is used to provide an answer. 239

Estimation! The straightforward answer to the question is given by an estimate with a 240

confidence interval, based on data related to the model. Many authors and teachers have 241

propageted the routine use of confidence intervals for statistical inference, but the magic of 242

expressing a result in just a single, scaleless number—the p-value—has won in practice. 243

Here, we need to note a different limitation: If effects are reported just when their 244

confidence intervals do not include zero, the selection bias still operates, and this problem of 245

the zero hypothesis testing “culture” is not avoided. 246
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Relevance threshold. In view of the Zero Hypothesis Testing Paradox, the sensible 247

question is: “Is the effect relevant?” This question asks for a threshold of relevance, to be 248

set by informed judgement. The threshold has been labelled “Smallest Effect Size Of 249

Interest (SESOI)” [37], “Minimum Practically Significant Distance (MPSD)” [38]. or the 250

limit of the “Region of Practical Equivalence (ROPE)” [39]. 251

Effect scale. The choice of a relevance threshold is often eased by expressing the effect of 252

interest on a natural scale, resulting from a transformation of the original effect parameter. 253

For example, distinctions are often expressed naturally as percentages. Then, inference 254

should be based on parameters and data transformed to logarithmic scale. This translates 255

percentage differences and multiplicative effects into linear differences and effects, which are 256

simpler to interpret and treat mathematically. Specifically, a chosen relevance threshold on 257

the log scale corresponds to a threshold on a multiplicative effect on the original scale. For 258

proportions or probabilities, the log-odds or logistic scale turns effects on odds into linear 259

differences. Whereas a difference of propabilities of 0.1 has a very different importance 260

depending on the two values—changing 0.5 to 0.6 is much less severe than changing 0.88 to 261

0.98—equal differences in log-odds can be interpreted as being equally relevant. A relevance 262

threshold for log-odds relates to a threshold on multiplicative changes of odds and identifies 263

changes in probabilities that are (arguably) intuitively comparable regardless of their 264

numerical values—a change from 0.5 to 0.6 appears equivalent to a move from 0.88 to 0.92. 265

An effect scale is suitable if equal differences on it correspond naturally to equally 266

important effects on the original scale, and a constant relevance threshold therefore applies 267

to the whole range of possible values. The transformed parameter will be called the effect ϑ. 268

For many quantitative target variables, equal differences on their original scale 269

correspond to equally important effects, and no transformation is called for. However, it 270

makes sense to compare an effect to the variable’s random variability between observations. 271

In the generic case of a paired sample, this standardization amounts to dividing the 272

expected mean θ by the standard deviation σ of the distribution of the Di’s to get the 273

standardized difference δ = θ/σ. The standardized effect shall be ϑ = δ/2 for the sake of 274

consistency with the standardized coefficient in regression, see [34]. 275

Choice of a relevance threshold. The choice of a threshold may appear like an 276

undesirable burden for the researcher and a source of arbitrariness. The Zero Hypothesis 277

Testing Paradox suggests that avoiding it is the source of irrelevant or misleading 278

research—certainly a worse option. 279

In order to alleviate the burden, Stahel [34] gives advice for a “default” choice for the 280

most commonly used statistical models. If the logarithmic scale is appropriate, a threshold 281

of 0.1, corresponding to a descrepancy of approximately 10% on the original scale, may be a 282

plausible choice. An analogous choice applies to the logistic scale, which is suitable for 283

proportions. For a standardized effect, the recommendation is again 0.1. 284

Remark 4 Effect scales thus also make effects on the various corresponding types of target 285

variables comparable. In many replicability studies, effects have been aligned by 286

transforming them into correlations, following OSC15. However, effects on this scale are 287

comparable only since they are centered such that the null effect turns into zero correlation, 288

and transformed effects are bound by −1 and 1. According to the arguments above, the 289

correlation scale is not a suitable effect scale. 290

Usually, the effect is supposed to be in one of the two possible directions. In order to 291

simplify the wording, we assume it to be positive in the rest of the section. 292
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Relevance measure. Relevance can be expressed as the effect ϑ, divided by the 293

relevance threshold ζ, Rl = ϑ/ζ. Then, a value of Rl larger than 1 indicates a relevant 294

result. It is a parameter of the model, and the point and interval estimates for the original 295

model parameter that determines the effect leads to an estimate Rle and a confidence 296

interval for the relevance. The lower and upper ends of the interval are called the “secured” 297

relevance Rls and the “potential” relevance Rlp, respectively. If the secured relevance is 298

larger than 1, the effect is statistically proven to be relevant in a clearly defined sense. Thus, 299

Rls can be used as a new single number to summarize the most important aspect of 300

inference—what the p-value was meant to accomplish. 301

Classification of results. Based on relevance, a differential answer to the research 302

question can be given according to the following distinction. 303

Rlv The effect is clearly relevant if the whole confidence interval is larger than the 304

threshold, Rls ≥ 1. 305

Ngl The effect is clearly irrelevant or negligible if the whole confidence interval lies on the 306

low side of the threshold, Rlp < 1—whether or not zero is covered, that is, the null 307

hypothesis is rejected. 308

Ctr The assumed direction of the effect proves wrong if the whole confidence interval lies 309

on the negative side, Rlp < 0, a clear contradiction. 310

Amb The result is ambiguous if relevance 1 is contained in the confidence interval, 311

Rls < 1 < Rlp. 312

Amb.Sig It may be worthwile to label the sub-case of Amb in which the result is at least 313

significantly larger than 0, Rls > 0, as Amb.Sig. 314

Ngl.Sig Similarly, the sub-case of Ngl with a significant effect is Ngl.Sig. It will be very rare 315

unless the sample size or the relevance threshold is large. 316

-
effect ϑ

0 relevance th. ζ

-
relevance

0 1

Rlv: Relevant

Amb.Sig: Ambiduous, sig.

Amb: Ambiguous

Ngl.Sig: Negligible, sig.

Ngl: Negligible

Ctr: Contradicting

1

317

Fig 1. Classification of cases based on a confidence interval and a relevance threshold

The problem of Zero Hypothesis Testing has often been mentioned as an important 318

cause of the reproducibility crisis. In fact, the relation between the two themes is only 319

indirect: The testing routine leads to efficient screening among multiple possible effects for 320

the most appearently significant ones and thereby entails the selective reporting bias. 321
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Remark 5 Bayesian inference has been advocated as the fruitful alternative to NHST. An 322

important argument is the possibility to assign and develop a probability for the null 323

hypothesis to be true. If the null hypothesis consists of a zero effect, our argument says that 324

its probability is zero, which contradicts this idea. For a “fat” null hypothesis, Bayesian 325

analysis makes sense, but also needs a relevance threshold, in addition to the specification of 326

a prior distribution on the effect, see [39]. 327

4 Assessment of Success 328

Let us come back to the theme of replicating an “original” study that examined an effect. 329

How should we assess the success of the replication? 330

There are two main aspects of success or failure: 331

• Does the replication lead to the same conclusion as the original? See 4.1. 332

• Are the two studies consistent in the sense that their quantitative results are similar? 333

See 4.2 to 4.5. 334

4.1 “Significant again” 335

The hypothesis testing mode of reasoning suggests that the replication of a significant effect 336

is successful if it turns out significant again and the estimate has the same sign in both 337

studies. Let us call this criterion “significant again,” “sigag.” 338

In the rare case when an insignificant original effect is examined by replication, success 339

would be to reach insignificance again, but a study with this goal would be, one could say, 340

of “null merit,” c.f. the Zero Hypothesis Testing Paradox. A meaningful question in this 341

case may ask if the effect can be shown to be negligible, see Section 3. 342

In the light of the preceding section, “sigag” is not a sensible criterion. Note that the 343

probability of achieving it depends on the p-value of the original result. Assume for a 344

moment that the original result was just significant (p=0.05) and the original estimate 345

happened to be the true value of the effect. Then (neglecting that the scale parameter needs 346

to be re-estimated), obtaining a larger estimated effect in the replication with the same 347

number of observations amounts to “sigag” and has a probability of about 0.5 [40], [41]. 348

In OSC15, the proportion of studies achieving “sigag” was 36%. 349

One can ask for the same conclusion again also using relevance: A relevant result in the 350

original study (case Rlv) is successfully replicated if the case Rlv shows up again, leading to 351

“relevant again.” Clearly, in the respective borderline case, this has again a probability of 0.5. 352

We will come back to this requirement and call it a “confirmation” when we distinguish 353

more cases than just “success” from “failure” in Section 4.6. 354

4.2 Consistency 355

In empirical studies, the data is subject to random variation. This applies to the original as 356

well as to the replication study. A reasonable question to ask is whether the data in the two 357

studies could be described as coming from the same statistical population. In the generic 358

case, this can be checked by testing if the average Di in the original study and in the 359

replication show a statistically significant difference. The question is answered by a 360

two-sample t-test. (Note that, again, a nonparametric rank sum test would be more 361

appropriate.) If the test shows no significance, one can say that the two samples are 362

consistent. 363

A closely related approach calculates a prediction interval for the estimate of the 364

replication from the estimate of the original study, its precision, and the sample size of the 365

replication, and checks if the actual estimate of the replication falls into this interval, 366
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see [23]. Applying this procedure to OSC15, they find that 75% of the replications produced 367

consistent data. 368

Remark 6 Note that this approach does not compare the data in all aspects, but 369

concentrates on the effects. In our generic case, the response values in the replication could 370

be quite divergent from those in the original study. The test only checks the differences Di 371

between the responses for the two treatments. If the response shows different values, the 372

new study indeed examines a generalization of the original results. 373

It is tempting to say that success of the replication is achieved if the confidence interval 374

of the replication overlaps with the interval of the original study. A second thought shows 375

that this criterion accepts compatibility more often than is likely assumed by most readers: 376

Under the null hypothesis of equal effects and sample sizes in the two studies, the 377

probability of such an overlap is about 99.7% (based on the normal instead of a t 378

distribution, Φ(2 · 1.96/
√

2)) instead of 95%. 379

Remark 7 The OCS15 study used confidence intervals in an inappropriate way: The 380

replication was labelled as successful when the confidence interval of the replication covered 381

the estimated effect of the original. This criterion does not consider the randomness of the 382

original result. It is easy to see that if the power of the replication study was increased 383

sufficiently, the criterion woud almost certainly fail, regardless of the quality of the original 384

study. A symmetrized version checks “whether the estimates are within each other’s 385

confidence intervals” [42] and suffers from the same flaw. In spite of these undesirable 386

properties, these criteria are still in use, see [18]. 387

4.3 Relevant Effect difference 388

Since we do not want to fall back on testing a hypothesis, we now re-formulate the problem. 389

In the generic case, the quantity to be estimated is half the difference between the true 390

treatment effects—or more generally of a parameter in a given model—in the two studies, 391

ED = (θ(r) − θ(o))/2. (The reason for choosing half the difference is mentioned above.) 392

In order to ease interpretation and avoid cumbersome details, assume that the effect in 393

the original study is positive, θ(o) > 0. The typical case of an attenuated effect then leads 394

to a negative ED. 395

The (approximate) confidence interval for ED is determined by the standard error se ED 396

obtained from the standard errors se(s) of the effect estimates in the two studies, 397

ÊD± q se ED , se2ED =
(
(se(o))2 + (se(r))2

)
/4 ,

where q is the appropriate quantile of a t distribution. 398

As discussed in the previous section, the result should be interpreted with reference to a 399

threshold of relevance. Since the plausible and relevant direction of the difference is to the 400

negative side (a smaller effect in the replication than in the original), the threshold is applied 401

with a minus sign. Then, the case “relevant (Rlv)” occurs if the confidence interval for ED 402

lies on the low side of this threshold, and analogously for the other cases of the classification 403

in Section 3. 404
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Standardized Effect Difference, EDS. Apart from this, the considerations on selecting 405

an effect scale apply to the comparison of the replication with the original again. The 406

possibly transformed or standardized effect difference is called EDS. The relevance threshold 407

for the comparison may be chosen differently from the threshold used for expressing the 408

relevance of the effects in the two studies. 409

Note that EDS is a parameter of the model. It is estimated by plugging in estimates of 410

the parameters. In our generic case, it is plausible to use the standardization 411

EDS = (θ(r) − θ(o))
/

(2σ) = ϑ(r) − ϑ(o), where σ is the standard deviation of the Dis and 412

is assumed to be the same in the two studies. 413

Remark 8 In the generic case, 2 ÊDS equals an index that is well-known in the social 414

sciences, called Cohen’s d and is sometimes called Standardized Mean Difference in other 415

sciences. Note, however, that the index here refers to the difference between studies, not as 416

usual to the difference between groups within study. 417

In fact, in many replication studies, Cohen’s d between groups has been used as the 418

effect size and calculated for both the original and the replication study. It is misleading to 419

compare the “d’s” between the studies. A difference, d(o) − d(r) = D
(o)
/σ̂(o) −D(r)

/σ̂(r), 420

could easily occur if the unstandardized effects D
(s)

were equal in the two studies, but the 421

variabilities σ̂(o) and σ̂(r) of the observations were different. Such a difference between 422

variabilities could be due to a true difference in precision of the measurements or to chance. 423

Thus, the effect θ itself must not be standardized when compared between studies, but the 424

standaridization of their difference by a common scaling parameter σ is appropriate. The 425

same argument applies to some other transformations of effects, like the transformation to a 426

correlation coefficient applied in OSC15 and other replication campaigns. 427

In the generic case, EDS is therefore estimated by 428

ÊDS = (ϑ̂(r) − ϑ̂(o))/σ̂ = ϑ̂(r)p − ϑ̂(o)p ,

where σ̂ is the pooled estimate of σ, and thus ϑ̂
(o)
p = θ̂(o)/σ̂ (subscript p for “pooled”) 429

differs from the standardized effect in the original study, ϑ̂(o) = θ̂(o)/σ̂(o), and analogously 430

for the estimates in the replication. ÊDS is then proportional to the t test statistic T for 431

comparison of two independent samples, T = 2 ÊDS/cn with cn =
√

1/n(o) + 1/n(r). The 432

confidence interval for 2 EDS is thus given by 2 ÊDS± q · cn, where q is the quantile of the t 433

distribution with n(o) + n(r) − 2 degrees of freedom. 434

A threshold of 0.1 for EDS equals the threshold 0.2 for “small” values for Cohen’s 435

standardized difference d = 2 EDS that is popular when interpreting d. 436

Standardization in the general case. In a general setup, the “effect” θ is any 437

parameter of interest in a given model describing the observations. An estimator θ̂ has a 438

given distribution, derived from the model. Usually, this distribution approximately equals a 439

Gaussian with a variance that is inversely proportional to the sample size, var(θ̂) = V/n, 440

θ̂ ∼ N (ϑ, V/n). Then, the estimator of 2 ED = θ(r) − θ(o) entails the confidence interval 441

(
θ̂(r) − θ̂(o)

)
± q

√
V̂ (o)/n(o) + V̂ (r)/n(r) .

Often, V does not depend on the value of θ, or this can be achieved by a transformation of 442

θ. Then, the standardized effect difference is 443

EDS =
(
θ(r) − θ(o)

)/(
2
√
V
)
.

Note that standardization is not needed nor recommended if the effect scale is 444

logarithmic or logistic. 445
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4.4 Desirable properties of discrepancy measures. 446

The quantity EDS has the first three of the following properties that we consider essential 447

for any index RD of Replication Discrepancy. 448

(P1) RD should be a function of parameters of the model for the original and the 449

replication(s) and thus should not depend on the number of observations used in the 450

studies. It is then estimated on the basis of the data. (See “Parametric models” in 451

Section 3.) 452

(P2) RD should measure the discrepancy between the quantities of interest in the original 453

and the replication study (or studies) and be rather insensitive to differences in other 454

aspects. 455

(P3) It is desirable that RD can be generalized to multivariate effects, as for instance to 456

analysis of variance, where several contrasts are of interest. 457

(P4) RD should generalize to the situation of more than one replication study. 458

The desired property (P4) leads us to extending our model as follows. 459

4.5 Heterogeneity of studies 460

Following the preceding arguments, one might expect that the test for zero difference 461

ED = 0 or EDS = 0 should fail only in about 5 percent of replications of original studies 462

that can be assumed to be free of selective reporting bias. General experimental-statistical 463

experience dampens this hope. The hypothesis of exactly equal expected effects, 464

ϑ(r) = ϑ(o), is not realistic in practice. It is clear from experience of any types of 465

measurements or observations that their random variation within the same study will be 466

smaller than the variation of measurements from different studies. In technical terms, there 467

is a variance component reflecting the differences between studies, the between studies 468

variance. The concept is usually called “heterogeneity” and forms the basis of the random 469

effects model in meta-analysis. In the generic case, the effects ϑ(s) in different studies s are 470

modelled as realizations of a random variable. The quantity of interest would be the 471

expected value Θ of this random variable, and its variance is the “between study variance 472

component” σ2
ϑ. Estimation of Θ is best achieved by an average (possibly a weighted one) 473

of the ϑ̂(s) that are available, and the width of a confidence interval would need to contain 474

an estimate of σϑ or of the (relative) Between Study Variability BSV = σϑ/σ. 475

Heterogeneity has received increasing attention in recent years, see, e.g, [43], [3], [44]. 476

Remark 9 In meta-analysis, an index (H in [46]) compares a version of the between-study 477

variability σ2
ϑ with the average of precisions 1/var

(
ϑ̂(s)

)
= n(s)/V (s) of the effect estimates 478

for the individual studies. In contrast, BSV uses the average of the V (s) quantities, which 479

describe the information contained in individual observations rather than the variability of 480

the estimates. This makes BSV a parameter of the model for the observations that is 481

independent of the numbers n(s) of observations in the studies, thus fulfilling property (P1), 482

whereas the random effects model of meta-analysis starts from the effect estimates in the 483

studies and their precisions and therefore fails to characterize the basic phenomenon 484

generating the data. 485

Remark 10 Clemens [10] states that “In expectation, these tests [the tests for 0 difference 486

of effect sizes] are supposed to yield estimates identical to the original study. If they do not, 487

then either the original or the replication contains a fluke, a mistake, or fraud.” In the light 488

of the concept of a between study variance component, such a conclusion is not warranted. 489

Several authors suggest potential reasons for heterogeneity and urge researchers to 490
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investigate and eliminate them. Experience from interlaboratory studies in chemistry and 491

metrology in general shows that often, no reasons for a variance component between 492

batches can be identified, but it remains relevant anyway. 493

If only the original and one replication study are available, an estimate of the between 494

studies variance component is only possible if the selective reporting bias of the original is 495

assumed to be zero, and it then relies on one degree of freedom and would therefore be 496

ill-determined and useless. (In fact, B̂SV2 =
(
ÊDS2 − (1/n0 + 1/n1)

)
/2—or 0, if this is 497

negative—can be interpreted as a point estimate of the between study variability BSV.) 498

Several replications! Remembering that a valid confidence interval for the true effect Θ 499

needs a reliable value for the between study variance σ2
ϑ, a reasonable number of replications 500

is needed for its estimation, as pointed out and justified by Hedges and Schauer [44]. Due to 501

the selective reporting bias, the original study should not be used in such an evaluation [47]. 502

Alternatively, if a number of replication studies for different original claims in a field of 503

application should lead to similar values of BSV, such a value may be used to calculate a 504

rough factor by which the confidence interval for ϑ(s) of a replication study should be 505

widened in order to be used as a confidence interval for the “global” true effect Θ. 506

4.6 A classification of outcomes 507

The goal of replication is to validate a scientific claim. Here, we deal with the case of an 508

“effect” that has been found relevant or at least significant in the original study. On the 509

basis of the confidence interval “IEff(r)” for the effect ϑ obtained in the replication and on 510

the confidence interval “IEDS” for EDS, the result may be characterized, using the scheme 511

of Section 3. Besides a threshold of relevance for the effect ϑ, a threshold for relevant 512

values of the standardized effect difference EDS is needed. EDS is relevant if it is lower than 513

the negative relevance threshold. Then, the result is a 514

(Cnf) Confirmation, if IEff(r) only contains relevant values (case Rlv), and the negative 515

standardized effect difference EDS is small (cases Ngl or Amb); if IEff(r) is only 516

significant (Amb.Sig) and the estimate ϑ̂1 is larger than the relevance threshold, we 517

call it a weak confirmation (CnfW), 518

(Att) Attenuation, if IEff(r) lies on the same side of 0 as in the original study (Rlv or 519

Amb.Sig) and IEDS is relevant (Rlv), 520

(Enh) Enhancement, if the replication suggests a clearly stronger effect, that is, case (Rlv) 521

for IEff(r) and significantly positive EDS (Ctr); this will be rare, 522

(Amb) Ambiguous, if IEff(r) covers the relevance threshold and it also covers zero (Amb) or 523

the estimate ϑ̂1 is below the reference threshold, 524

(Anh) Annihilation, if IEff(r) covers only irrelevant values (Ngl), 525

(Ctr) Contradiction, if all values of IEff(r) have the opposite sign (Ctr), 526

(Drp) Dropout, if the replication failed to mimik the experimental or observational setup. 527

The classification is summarized in Table 1 and displayed in Figure 2. The first three cases 528

are identified by the “significant again” criterion as a successful replication. Nevertheless, 529

conclusions might be rather different between them, see Section 6. 530
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Effect estimate Effect Difference (standardized), IEDS

IEff(r) in replication relevant, Rlv Amb or Ngl contradicting, Ctr
relevant, Rlv attenuation, Att confirmation, Cnf enhancement, Enh

significant, Sig attenuation, Att weak conf., CnfW∗ —
ambiguous, Amb ambiguous, Amb ambiguous, Amb —

negligible, Ngl annihilation, Anh annihilation, Anh∗∗ —
contradicting, Ctr contradiction, Ctr — —

Table 1. Classification of results of a replication of a relevant effect, based on the
classificaion of the confidence interval IEff(r) for the effect in the replication and the
confidence interval IEDS of the EDS. It is assumed that the original effect was relevant or at
least significant. Then, the cases marked — cannot occur. ∗ This conclusion also requires
Rle ≥ 1; otherwise, it counts as ambiguous. ∗∗ This cannot occur if the original effect was
relevant.

standardized effect size
−0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

original

Enh

Cnf

CnfW

Amb

Att

Anh

Ctr

Fig 2. Classification of replication results for a relevant original effect. Confidence intervals
for the original effect (top, green) and for the effect obtained in the replication in the
different possible cases (blue). The additional ticks and thicker lines on the bars allow for an
assessment of EDS. If the intervals bounded by them do not overlap, EDS is significantly
different from 0. In order for EDS to be also relevant, the gap must be longer than
ρD = 0.1, say. Thus, for “attenuation”, Att, the right hand end point of the bar’s thicker
part must be to the left of the red dashed vertical line.

531

Remark 11 Bonett [48] also uses IEff(r) and IEDS to classify replication results. His 532

classes are defined by one of these intervals or the other. Therefore, they overlap. See 533

supplementary material for more detail. 534

As an illustration, Figure 3 shows confidence intervals for standardized effects in ten 535

“simple cases” studied in OSC15, together with their classification. The data is displayed in 536

the Supplement. We suggest that showing the confidence intervals for the original study and 537

the replication(s), including the relevance threshold (cf. end of Section 3) should become a 538

standard display of the information in replication studies. (Unfortunately, we had to compare 539

standardized effects here, disregarding Remark 8, since unstandardized effects are not given 540

in the data provided by OSC15.) 541

The figures display additional ticks on the interval bars that allow for checking the 542

significance of the effect difference ED. If the shortened intervals do not overlap, the 543
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difference is significant, and the relative width of the gap or overlap visualizes how 544

significant the difference is indeed. The position of the ticks is given, for the original study, 545

by ϑ̂(o) ± qν(o)se(o), where ν(o) = 2 se ED

/
(se(o) + se(r)), and analogously for the 546

replication results. Then, the gap is, if ED > 0, 547

ϑ̂(r)−qν(r)se(r)− (ϑ̂(o) +qν(o)se(o)) = 2 ED− (qν(o)se(o) +qν(r)se(r)) = 2 (ED−q se ED) ,

which is positive if and only if the difference is significant. (This enhancement corresponds 548

to the idea of “notched box plots” [49]) and makes it exact for the comparison of two 549

samples.) 550

effect size, standardized

−0.5 0.0 0.5 1.00.1

St.153

St.121

St.7

St.113

St.127

St.146

St.6

St.33

St.116

St.15

  8

 12

100

125

 29

 15

 24

 40

173

 95

  8

 24

 15

177

 26

 12

 32

 40

140

242

Amb

Cnf

Amb

Enh

Cnf

Amb

CnfW

CnfW

CnfW

CnfW

Fig 3. Confidence intervals for effects in ten items studied in OSC15, all based on paired or
simple t-tests. Original and replication results are shown in green and blue, respectively. The
number of observations and the classification according to Table 1 are shown in the right
margin.

551

5 Replication! 552

Let us briefly come back to the different sources of selective reporting bias. It emerges in 553

settings where data may show several or many effects or patterns. By a formal or informal 554

search, the most prominent ones are selected, and statistical methods are applied that ignore 555
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this selection process. Note that if a study is designed in the first place to find “real” effects 556

among a clearly defined set of possible ones in a structured way, there often are statistical 557

tools to avoid selective reporting bias, notably the well-known Bonferroni rule, but also more 558

refined methods like those proposed in [50], [51], [52]. But in general, such methods to 559

correct for selection are not available or not used. 560

Pre-registration! Publication bias is avoided by pre-registration: The scientific claim(s) 561

to be examined and the plan to perform a respective study are published in an accessible 562

and visible registry, before the data is collected. Such pre-registration reports—usually 563

called “registered reports”—should be peer-reviewed [53]. The results of the study must 564

then be published regardless of whether they confirm or contradict the claim. Whereas such 565

practice can be useful even for original work, it must be standard for replication studies, 566

since otherwise, selection bias may easily play again and even a joint meta-analysis of several 567

replications could not be reliably interpreted. A replication that is not pre-registered should 568

not obtain the label “replication,” and should be avoided. 569

Several replications are needed! If a trustworthy confidence interval for the size of an 570

effect is desired, the between studies variance component must be estimated. As argued 571

above, several replications—at least 5, say—should be planned and pre-registered. 572

Remark 12 Experience in the series of replications in cancer biology shows that in several 573

studies, some of the preliminary steps needed before acquiring the data for validating the 574

original claims have failed and a section on “Deviations from registered report” became 575

necessary. When essential deviations occur, the replication should be counted as a 576

“dropout.” 577

Remark 13 A confidence interval obtained in a pre-registered study would have the correct 578

probability of covering the true parameter value if there was no between studies variance 579

component, see above. Note, however, that such a study may in fact be a step in a stepwise 580

strategy (Section 6): If the replication fails to be significant again, there is an incentive to 581

try it again by another pre-registered replication. If this was a clear strategy, a formal 582

treatment as a sequential procedure would be appropriate to derive correct coverage 583

probabilities. 584

Remark 14 Extending this consideration further makes it clear that the selective reporting 585

bias of scientific claims can be greatly reduced by replication studies and strategies, but not 586

eliminated, because claims that are not confirmed will be forgotten, and those that are will 587

be retained. This again constitutes a selection and leads to a “secondary selective reporting 588

bias.” The flaw is reduced if replications are restricted to the most relevant claims. A blind 589

routine of replicating as much as possible would increase the secondary selective reporting 590

bias. 591

Remark 15 When planning a single replication, it is essential to consider the power of the 592

new study—as a low powered single replicaton will enhance the problems just mentioned. 593

Using the estimated effect from the original study as the true effect for power analysis would 594

be inappropriate because of the selective reporting bias that is to be assumed for the original 595

work. Samantha et al. [54] and Bonnett [48] consider the uncertainty of the original 596

estimate in addition to the bias, discuss the implications and provide a method to calculate 597

more appropriate sample sizes for a replication. Implications of statistical power are 598

discussed extensively by Morey and Lakens [55] under the title “Why most of psychology is 599

statistically unfalsifiable.” 600
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Performing replications can be made attractive. Even though the benefits of 601

replication studies are widely recognized, many authors seem rather pessimistic since they 602

judge such studies to be unattractive. They state that researchers will not get the necessary 603

recognition and funds if they invest their time and resources into such activities. 604

However, we see two ways that lead to the desired studies: 605

• Beginning PhD students need to learn and practice the methods of scientific studies in 606

their field. They often work in directions that start from an existing publication. If 607

they are asked to perform a replication of such a study at the start, this guarantees a 608

first publication, which is counted towards number needed to complete their 609

thesis [56], [57]. 610

• More generally, research often aims at a generalization or extention in the sense of 611

Section 2. Such projects should contain a (pre-registered!) replication as a first part 612

[58], [59]. 613

Chambers [60] gives good arguments for a change of culture rewarding replications. 614

Let’s establish the rules! The following rules should be suitable for establishing the 615

replication paradigm: 616

• The Pottery Barn Rule [61]. Journals should adopt the policy of accepting 617

pre-registrations for replication studies of the “original” papers that they have 618

published. They entertain a publicly available list of these pre-registered projects, 619

preferably integrated with the lists of other journals. They guarantee that the results 620

of the replication will be published: A short version must appear in their main mode 621

of publication, possibly leaving the documentation to an online “supplementary” part. 622

This should allow journals and their readers to keep their enthusiasm for novel findings 623

any yet promote the establishment of reliable knowledge. 624

Adequate power for deciding about the relevance of the effect need not be required in 625

each replication, as several independent “underpowered” replications are more easily 626

obtained and more useful than a large replication study, since such studies eventually 627

allow for estimation of the inter-study variability. Note, however, that a conclusive 628

joint evaluation is only warranted for a pre-planned series, since otherwise, the results 629

of the first studies might influence the likelihood that later studies will be undertaken. 630

• Supervisors and funding agencies of beginning PhD students ask that they start with a 631

replication study, preferably of an original study from another research group. This 632

would even enhance cooperation among groups. (Clearly, this principle cannot be 633

followed in fields where experiments take long—more than a year, say.) 634

• In addition, the principles of open science, i.e., complete transparency, data availability 635

and re-computability of analysis help to improve reproducibility. Here, the platform of 636

the Open Science Framework [62, 63] is a very useful resource, and badges or medals 637

[64] can help acknowledge the efforts. 638

An extensive discussion on “making replications mainstream” is provided by Zwaan et 639

al. [65] and the 36 evoked comments. 640

6 Conclusions 641

The basic paradigm in science states that facts should only be recognized as such if they can 642

be and have been reproduced. In many empirical science fields, this is not often practiced, 643

and it is difficult to judge which statements should be regarded as reliable. Even worse, 644
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when replication studies were undertaken, their results have shown a disappointing rate of 645

confirmation. This insight has lead to the “reproducibility crisis” in large parts of science. 646

An important trigger is the urge to find new “facts” by a kind of raster screening. The 647

content of research is often not guided by interesting relevant questions but by exploring 648

many potential effects of minor importance with the hope to find statistically significant 649

ones in some niche. The trap of selection bias or “p-hacking” snaps [66] [67]. 650

Awareness and concern about the problem have increased and lead to a flood of 651

editorials and articles—and even books—that have dealt with diagnoses, interpretations, 652

reviews, and proposals for procedures and policies. In this contribution, we have focussed on 653

some basic issues: 654

• Estimation, not testing. Solid empirical research concerns important relations and 655

aims at estimation of relevant effects, intending not only to prove that they are 656

different from zero—which they are “almost surely” in any case. An estimation 657

problem asks for a relevance threshold, and the adequate and straightforward way to 658

present the result is by a confidence interval. If a conclusion is needed, it should 659

consist of checking whether the confidence interval covers the threshold. The small 660

but important step from the misguided use of p values to providing confidence 661

intervals with their simple and direct relation to the scientific problem of assessing an 662

effect must finally be consistently implemented. 663

• Between study variation. In any two studies, we should expect a variation between 664

effects that is not restricted to the statistical variability of their estimates within each 665

study as quantified by the formal standard error. This insight is best described by the 666

random effects model of meta-analysis. Consequently, large replication studies should 667

not be expected to yield effect estimates that are compatible with the original in the 668

sense of statistically insignificant difference, due both to this heterogeneity and to the 669

selective reporting bias. 670

The other important consequence is that the confidence interval obtained from a single 671

study does not cover the true effect with the probability expressed by the nominal 672

confidence level. It should be widened by a factor reflecting the between-study 673

variance. A whole set of studies is needed to estimate this variance, or an informed 674

value must be assumed. Due to the selective reporting bias lurking in “original 675

studies,” sincere estimation is only achieved from pre-registered replications, thereby 676

devaluating the quantitative results of the original study in favor of unbiasedness. 677

This paradigm entails a fundamental change in planning replications. It is not really 678

useful to conduct a single replication with a desired power, calculated on the basis of 679

the assumption of equal true effects between original and replication. Instead, a series 680

of replications should be planned (possibly using a sequential design) and the sample 681

sizes should be determined by power calculations respecting the heterogeneity, see [47]. 682

• “Success” of a replication. Statements about reproducibility should be careful in 683

their use of terminology and differentiate possible outcomes. A binary answer is not 684

helpful. We have suggested a classification with six different outcomes. 685

Usually, a replication is designed as “close” as possible to the original, using, in the 686

applicable sense, the same “population” and the same methods. This principle is meant to 687

lead to a high probability of getting consistent results—which, as we just argued, will be 688

“successful” (p < 0.05) only if the statistical power is kept low enough to avoid detection of 689

the interstudy variability. For important scientific problems, however, an essential criterion is 690

the generalizability of the result. Therefore, an adequate compromise between confirmation 691

and extension of results is needed (see also conclusions in [22]). 692

In summary, then, a strategy is needed in order to obtain reliable scientific facts. An 693

attempt to draft such a standard is the following. 694
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• If a claim is of basic interest for the field, multiple replications should be planned. A 695

judgement is needed on the extent to which these replications should generalize the 696

context and thus extend the domain of validity, and on the relevance threshold. These 697

decisions may be a topic for professional societies. 698

• For findings stemming from exploratory studies, a first close (pre-registered) 699

replication should be conducted, and depending on the result, more replications should 700

follow: In the case of a confirmation (Cnf according to Section 4.6), generalizations 701

can be studied, but in case of an attenuation or ambiguous result, more close 702

replication is suggested. When replications are conducted without a pre-planned 703

strategy, meta-analyses need to take the sequential aspects into account. 704

• If a study serves to validate a theoretical proposition, it should be pre-registered in the 705

first place. 706

• In other cases, claims should be interpreted as working hypotheses ( [68] and others). 707

Such exploratory results should still play an important role in science and, if done with 708

enough care, get published as the potential source of replication or, more generally, as 709

indications for generating theoretical hypotheses to be examined by pre-registered 710

studies. 711

Such a strategy aims at structuring the process of knowledge generation. They should avoid 712

rules that restrict creativity, but rather help distinguish the degrees of reliability of 713

empirically based claims and thereby save resources. 714

Our recommendations ask for substantial changes in the practice of empirical research. 715

We are convinced that the crisis of empirical science is even deeper than recognized by the 716

current discussion, and it is time to ask for the changes needed to overcome it even though 717

they sound overly challenging at present. In the long run, solid establishment of scientific 718

facts will prove sustainable, whereas past and present practices dilute the credibility of 719

science and threaten to erode the support from society it still enjoys. 720
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