| fit_p | Step 3: Optimizing parameters to fit real data | 
| func_epsilon | Function: Exploration Strategy | 
| func_eta | Function: Learning Rate | 
| func_gamma | Function: Utility Function | 
| func_pi | Function: Upper-Confidence-Bound | 
| func_tau | Function: Soft-Max Function | 
| Mason_2024_Exp1 | Experiment 1 from Mason et al. (2024) | 
| Mason_2024_Exp2 | Experiment 2 from Mason et al. (2024) | 
| optimize_para | Process: Optimizing Parameters | 
| rcv_d | Step 2: Generating fake data for parameter and model recovery | 
| recovery_data | Process: Recovering Fake Data | 
| rpl_e | Step 4: Replaying the experiment with optimal parameters | 
| RSTD | Model: RSTD | 
| run_m | Step 1: Building reinforcement learning model | 
| simulate_list | Process: Simulating Fake Data | 
| summary.binaryRL | S3method summary | 
| TD | Model: TD | 
| Utility | Model: Utility |