
Package ‘CFtime’
February 28, 2024

Title Using CF-Compliant Calendars with Climate Projection Data

Version 1.3.0

Description Support for all calendars as specified in the Climate and Forecast
(CF) Metadata Conventions for climate and forecasting data. The CF Metadata
Conventions is widely used for distributing files with climate observations
or projections, including the Coupled Model Intercomparison Project (CMIP)
data used by climate change scientists and the Intergovernmental Panel on
Climate Change (IPCC). This package specifically allows the user to work
with any of the CF-compliant calendars (many of which are not compliant with
POSIXt). The CF time coordinate is formally defined in the CF Metadata
Conventions document available at <https://cfconventions.org/Data/cf-conventions/
cf-conventions-1.10/cf-conventions.html#time-coordinate>.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.2.3

Imports methods, utils

Suggests knitr, rmarkdown, ncdf4, RNetCDF, testthat (>= 3.0.0)

URL https://github.com/pvanlaake/CFtime

BugReports https://github.com/pvanlaake/CFtime/issues

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Patrick Van Laake [aut, cre, cph]

Maintainer Patrick Van Laake <patrick@vanlaake.net>

Repository CRAN

Date/Publication 2024-02-28 11:50:05 UTC

1

https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#time-coordinate
https://cfconventions.org/Data/cf-conventions/cf-conventions-1.10/cf-conventions.html#time-coordinate
https://github.com/pvanlaake/CFtime
https://github.com/pvanlaake/CFtime/issues

2 +,CFtime,CFtime-method

R topics documented:
+,CFtime,CFtime-method . 2
+,CFtime,numeric-method . 3
==,CFtime,CFtime-method . 4
CFcomplete . 4
CFdefinition . 5
CFfactor . 6
CFfactor_coverage . 8
CFfactor_units . 9
CFmonth_days . 10
CFparse . 11
CFrange . 12
CFsubset . 13
CFtime . 13
CFtime-class . 14
CFtimestamp . 15

Index 16

+,CFtime,CFtime-method

Merge two CFtime objects

Description

Two CFtime instances can be merged into one with this operator, provided that the units and calen-
dars of the datums of the two instances are equivalent.

Usage

S4 method for signature 'CFtime,CFtime'
e1 + e2

Arguments

e1, e2 CFtime. Instances of the CFtime class.

Details

If the origins of the two datums are not identical, the earlier origin is preserved and the offsets of
the later origin are updated in the resulting CFtime instance.

The order of the two parameters is indirectly significant. The resulting CFtime instance will have
the offsets of both instances in the order that they are specified. There is no reordering or removal
of duplicates. This is because the time series are usually associated with a data set and the corre-
spondence between the data in the files and the CFtime instance is thus preserved. When merging
the data sets described by this time series, the order must be identical to the merging here.

+,CFtime,numeric-method 3

Value

A CFtime object with a set of offsets composed of the offsets of the instances of CFtime that the
operator operates on. If the datum units or calendars of the CFtime instances are not equivalent, an
error is thrown.

Examples

e1 <- CFtime("days since 1850-01-01", "gregorian", 0:364)
e2 <- CFtime("days since 1850-01-01 00:00:00", "standard", 365:729)
e1 + e2

+,CFtime,numeric-method

Extend a CFtime object with additional offsets

Description

A CFtime instance can be extended by adding additional offsets using this operator.

Usage

S4 method for signature 'CFtime,numeric'
e1 + e2

Arguments

e1 CFtime. Instance of the CFtime class.

e2 numeric. Vector of offsets to be added to the CFtime instance.

Details

The resulting CFtime instance will have its offsets in the order that they are added, meaning that
the offsets from the CFtime instance come first and those from the numeric vector follow. There is
no reordering or removal of duplicates. This is because the time series are usually associated with
a data set and the correspondence between the two is thus preserved, if and only if the data sets are
merged in the same order.

Note that when adding multiple vectors of offsets to a CFtime instance, it is more efficient to first
concatenate the vectors and then do a final addition to the CFtime instance. So avoid CFtime(definition,
calendar, e1) + CFtime(definition, calendar, e2) + CFtime(definition, calendar, e3) +
... but rather do CFtime(definition, calendar, e1) + c(e2, e3, ...). It is the responsibility
of the operator to ensure that the offsets of the different data sets are in reference to the same datum.

Negative offsets will generate an error.

Value

A CFtime object with offsets composed of the CFtime instance and the numeric vector.

4 CFcomplete

Examples

e1 <- CFtime("days since 1850-01-01", "gregorian", 0:364)
e2 <- 365:729
e1 + e2

==,CFtime,CFtime-method

Equivalence of CFtime objects

Description

This operator can be used to test if two CFtime objects represent the same CF-convention time
coordinates. Two CFtime objects are considered equivalent if they have an equivalent datum and
the same offsets.

Usage

S4 method for signature 'CFtime,CFtime'
e1 == e2

Arguments

e1, e2 CFtime. Instances of the CFtime class.

Value

TRUE if the CFtime objects are equivalent, FALSE otherwise.

Examples

e1 <- CFtime("days since 1850-01-01", "gregorian", 0:364)
e2 <- CFtime("days since 1850-01-01 00:00:00", "standard", 0:364)
e1 == e2

CFcomplete Indicates if the time series is complete

Description

This function indicates if the time series is complete, meaning that the time steps are equally spaced
and there are thus no gaps in the time series.

Usage

CFcomplete(x)

CFdefinition 5

Arguments

x An instance of the CFtime class

Details

This function gives exact results for time series where the nominal unit of separation between
observations in the time series is exact in terms of the datum unit. As an example, for a datum unit
of "days" where the observations are spaced a fixed number of days apart the result is exact, but
if the same datum unit is used for data that is on monthly a basis, the assessment is approximate
because the number of days per month is variable and dependent on the calendar (the exception
being the 360_day calendar, where the assessment is exact). The result is still correct in most cases
(including all CF-compliant data sets that the developers have seen) although there may be esoteric
constructions of CFtime and offsets that trip up this implementation.

Value

logical. TRUE if the time series is complete, with no gaps; FALSE otherwise. If no offsets have been
added to the CFtime instance, NA is returned.

Examples

cf <- CFtime("days since 1850-01-01", "julian", 0:364)
CFcomplete(cf)

CFdefinition Properties of a CFtime object

Description

These functions return the properties of an instance of the CFtime class. The properties are all
read-only, but offsets can be added using the + operator.

Usage

CFdefinition(cf)

CFcalendar(cf)

CFunit(cf)

CForigin(cf)

CFtimezone(cf)

CFoffsets(cf)

CFresolution(cf)

6 CFfactor

Arguments

cf CFtime. An instance of CFtime.

Value

CFcalendar() and CFunit() return an atomic character string. CForigin() returns a data frame
of timestamp elements with a single row of data. CFtimezone() returns the datum time zone as an
atomic character string. CFoffsets() returns a vector of offsets or NULL if no offsets have been set.

Functions

• CFdefinition(): The definition string of the CFtime instance

• CFcalendar(): The calendar of the CFtime instance

• CFunit(): The unit of the CFtime instance

• CForigin(): The origin of the CFtime instance in timestamp elements

• CFtimezone(): The time zone of the datum of the CFtime instance as a character string

• CFoffsets(): The offsets of the CFtime instance as a vector

• CFresolution(): The average separation between the offsets in the CFtime instance

Examples

cf <- CFtime("days since 1850-01-01", "julian", 0:364)
CFdefinition(cf)
CFcalendar(cf)
CFunit(cf)
CFtimezone(cf)
CForigin(cf)
CFoffsets(cf)
CFresolution(cf)

CFfactor Create a factor from the offsets in an CFtime instance

Description

With this function a factor can be generated for the time series, or a part thereof, contained in the
CFtime instance. This is specifically interesting for creating factors from the date part of the time
series that aggregate the time series into longer time periods (such as month) that can then be used
to process daily CF data sets using, for instance, tapply().

Usage

CFfactor(cf, period = "month", epoch = NULL)

CFfactor 7

Arguments

cf CFtime. An atomic instance of the CFtime class whose offsets will be used to
construct the factor.

period character. An atomic character string with one of the values "year", "season",
"month" (the default), "dekad" or "day".

epoch numeric or list, optional. Vector of years for which to construct the factor, or
a list whose elements are each a vector of years. If epoch is not specified, the
factor will use the entire time series for the factor.

Details

The factor will respect the calendar of the datum that the time series is built on. For periods longer
than a day this will result in a factor where the calendar is no longer relevant (because calendars
impacts days, not dekads, months or seasons).

The factor will be generated in the order of the offsets of the CFtime instance. While typical CF-
compliant data sources use ordered time series there is, however, no guarantee that the factor is
ordered as multiple CFtime objects may have been merged out of order.

If the epoch parameter is specified, either as a vector of years to include in the factor, or as a list of
such vectors, the factor will only consider those values in the time series that fall within the list of
years, inclusive of boundary values. Other values in the factor will be set to NA. The years need not
be contiguous, within a single vector or among the list items, or in order.

The following periods are supported by this function:

• year, the year of each offset is returned as "YYYY".

• season, the meteorological season of each offset is returned as "DJF", "MAM", "JJA" or
"SON", preceeded by "YYYY-" if no epoch is specified. Note that December dates are labeled
as belonging to the subsequent year, so the date "2020-12-01" yields "2021-DJF". This implies
that for standard CMIP files having one or more full years of data the first season will have
data for the first two months (January and February), while the final season will have only a
single month of data (December).

• month, the month of each offset is returned as "01" to "12", preceeded by "YYYY-" if no
epoch is specified. This is the default period.

• dekad, ten-day periods are returned as "Dxx", where xx runs from "01" to "36", preceeded by
"YYYY" if no epoch is specified. Each month is subdivided in dekads as follows: 1- days 01
- 10; 2- days 11 - 20; 3- remainder of the month.

• day, the month and day of each offset are returned as "MM-DD", preceeded by "YYYY-" if
no epoch is specified.

It is not possible to create a factor for a period that is shorter than the temporal resolution of the
source data set from which the cf argument derives. As an example, if the source data set has
monthly data, a dekad or day factor cannot be created.

Creating factors for other periods is not supported by this function. Factors based on the timestamp
information and not dependent on the calendar can trivially be constructed from the output of the
CFtimestamp() function.

8 CFfactor_coverage

Value

If epoch is a single vector or not specified, a factor with a length equal to the number of offsets in
cf. If epoch is a list, a list with the same number of elements and names as epoch, each containing a
factor. Elements in the factor will be set to NA for time series values outside of the range of specified
years.

Examples

cf <- CFtime("days since 1949-12-01", "360_day", 19830:54029)

Create a dekad factor for the whole time series
f <- CFfactor(cf, "dekad")

Create three monthly factors for early, mid and late 21st century epochs
ep <- CFfactor(cf, epoch = list(early = 2021:2040, mid = 2041:2060, late = 2061:2080))

CFfactor_coverage Coverage of time elements for each factor level

Description

This function calculates the number of time elements, or the relative coverage, in each level of a
factor generated by CFfactor().

Usage

CFfactor_coverage(cf, f, coverage = "absolute")

Arguments

cf CFtime. An instance of CFtime.

f factor or list. A factor or a list of factors derived from the parameter cf. The
factor or list thereof should generally be generated by the function CFfactor().

coverage "absolute" or "relative".

Value

If f is a factor, a numeric vector with a length equal to the number of levels in the factor, indicating
the number of units from the time series in cf contained in each level of the factor when coverage
= "absolute" or the proportion of units present relative to the maximum number when coverage
= "relative". If f is a list of factors, a list with each element a numeric vector as above.

Examples

cf <- CFtime("days since 2001-01-01", "365_day", 0:364)
f <- CFfactor(cf, "dekad")
CFfactor_coverage(cf, f, "absolute")

CFfactor_units 9

CFfactor_units Number of base time units in each factor level

Description

Given a factor as returned by CFfactor() and the CFtime instance from which the factor was
derived, this function will return a numeric vector with the number of time units in each level of the
factor.

Usage

CFfactor_units(cf, f)

Arguments

cf CFtime. An instance of CFtime.
f factor or list. A factor or a list of factors derived from the parameter cf. The

factor or list thereof should generally be generated by the function CFfactor().

Details

The result of this function is useful to convert between absolute and relative values. Climate change
anomalies, for instance, are usually computed by differencing average values between a future
period and a baseline period. Going from average values back to absolute values for an aggregate
period (which is typical for temperature and precipitation, among other variables) is easily done
with the result of this function, without having to consider the specifics of the calendar of the data
set.

If the factor f is for an epoch (e.g. spanning multiple years and the levels do not indicate the specific
year), then the result will indicate the number of time units of the period in a regular single year. In
other words, for an epoch of 2041-2060 and a monthly factor on a standard calendar with a days
unit, the result will be c(31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31). Leap days are thus
only considered for the 366_day and all_leap calendars.

Note that this function gives the number of time units in each level of the factor - the actual number
of data points in the cf instance per factor level may be different. Use CFfactor_coverage() to
determine the actual number of data points or the coverage of data points relative to the factor level.

Value

If f is a factor, a numeric vector with a length equal to the number of levels in the factor, indicating
the number of time units in each level of the factor. If f is a list of factors, a list with each element
a numeric vector as above.

Examples

cf <- CFtime("days since 2001-01-01", "365_day", 0:364)
f <- CFfactor(cf, "dekad")
CFfactor_units(cf, f)

10 CFmonth_days

CFmonth_days Return the number of days in a month given a certain CF calendar

Description

Given a vector of dates as strings in ISO 8601 or UDUNITS format and a CFtime object, this
function will return a vector of the same length as the dates, indicating the number of days in
the month according to the calendar specification. If no vector of days is supplied, the function
will return an integer vector of length 12 with the number of days for each month of the calendar
(disregarding the leap day for standard and julian calendars).

Usage

CFmonth_days(cf, x = NULL)

Arguments

cf CFtime. The CFtime definition to use.

x character. An optional vector of dates as strings with format YYYY-MM-DD. Any
time part will be silently ingested.

Value

A vector indicating the number of days in each month for the vector of dates supplied as a parameter
to the function. If no dates are supplied, the number of days per month for the calendar as a vector
of length 12. Invalidly specified dates will result in an NA value.

See Also

When working with factors generated by CFfactor(), it is usually better to use CFfactor_units()
as that will consider leap days for non-epoch factors. CFfactor_units() can also work with other
time periods and datum units, such as "hours per month", or "days per season".

Examples

dates <- c("2021-11-27", "2021-12-10", "2022-01-14", "2022-02-18")
cf <- CFtime("days since 1850-01-01", "standard")
CFmonth_days(cf, dates)

cf <- CFtime("days since 1850-01-01", "360_day")
CFmonth_days(cf, dates)

cf <- CFtime("days since 1850-01-01", "all_leap")
CFmonth_days(cf, dates)

CFmonth_days(cf)

CFparse 11

CFparse Parse series of timestamps in CF format to date-time elements

Description

This function will parse a vector of timestamps in ISO8601 or UDUNITS format into a data frame
with columns for the elements of the timestamp: year, month, day, hour, minute, second, time
zone. Those timestamps that could not be parsed or which represent an invalid date in the indi-
cated CFtime instance will have NA values for the elements of the offending timestamp (which will
generate a warning).

Usage

CFparse(cf, x)

Arguments

cf CFtime. An instance of CFtime indicating the CF calendar and datum to use
when parsing the date.

x character. Vector of character strings representing timestamps in ISO8601 ex-
tended or UDUNITS broken format.

Details

The supported formats are the broken timestamp format from the UDUNITS library and ISO8601
extended, both with minor changes, as suggested by the CF Metadata Conventions. In general, the
format is YYYY-MM-DD hh:mm:ss.sss hh:mm. The year can be from 1 to 4 digits and is interpreted
literally, so 79-10-24 is the day Mount Vesuvius erupted and destroyed Pompeii, not 1979-10-24.
The year and month are mandatory, all other fields are optional. There are defaults for all missing
values, following the UDUNITS and CF Metadata Conventions. Leading zeros can be omitted in
the UDUNITS format, but not in the ISO8601 format. The optional fractional part can have as
many digits as the precision calls for and will be applied to the smallest specified time unit. In the
result of this function, if the fraction is associated with the minute or the hour, it is converted into
a regular hh:mm:ss.sss format, i.e. any fraction in the result is always associated with the second,
rounded down to milli-second accuracy. The time zone is optional and should have at least the hour
or Z if present, the minute is optional. The time zone hour can have an optional sign. The separator
between the date and the time can be a single whitespace character or a T; in the UDUNITS format
the separator between the time and the time zone must be a single whitespace character.

Currently only the extended formats (with separators between the elements) are supported. The
vector of timestamps may have any combination of ISO8601 and UDUNITS formats.

Timestamps that are prior to the datum are not allowed. The corresponding row in the result will
have NA values.

12 CFrange

Value

A data frame with constituent elements of the parsed timestamps in numeric format. The columns
are year, month, day, hour, minute, second (with an optional fraction), time zone (character string),
and the corresponding offset value from the datum. Invalid input data will appear as NA - if this is
the case, a warning message will be displayed - other missing information on input will use default
values.

Examples

cf <- CFtime("days since 0001-01-01", "proleptic_gregorian")

This will have `NA`s on output and generate a warning
timestamps <- c("2012-01-01T12:21:34Z", "12-1-23", "today",

"2022-08-16T11:07:34.45-10", "2022-08-16 10.5+04")
CFparse(cf, timestamps)

CFrange Extreme time series values

Description

Character representation of the extreme values in the time series

Usage

CFrange(x)

S4 method for signature 'CFtime'
CFrange(x)

Arguments

x An instance of the CFtime class

Value

character. Vector of two character representations of the extremes of the time series.

Methods (by class)

• CFrange(CFtime): Extreme values of the time series

Examples

cf <- CFtime("days since 1850-01-01", "julian", 0:364)
CFrange(cf)

CFsubset 13

CFsubset Which time steps fall within two extreme values

Description

Given two extreme character timestamps, return a logical vector of a length equal to the number of
time steps in the CFtime instance with values TRUE for those time steps that fall between the two
extreme values, FALSE otherwise. This can be used to select slices from the time series in reading
or analysing data.

Usage

CFsubset(x, extremes)

Arguments

x CFtime. The time series to operate on.

extremes character. Vector of two timestamps that represent the extremes of the time
period of interest. The timestamps must be in increasing order. The timestamps
need not fall in the range of the time steps in the CFtime stance.

Value

A logical vector with a length equal to the number of time steps in x with values TRUE for those time
steps that fall between the two extreme values, FALSE otherwise. The earlier timestamp is included,
the later timestamp is excluded. A specification of c("2022-01-01", "2023-01-01") will thus
include all time steps that fall in the year 2022.

Examples

cf <- CFtime("hours since 2023-01-01 00:00:00", "standard", 0:23)
CFsubset(cf, c("2022-12-01", "2023-01-01 03:00"))

CFtime Create a CFtime object

Description

This function creates an instance of the CFtime class. The arguments to the call are typically read
from a CF-compliant data file with climatological observations or climate projections. Specification
of arguments can also be made manually in a variety of combinations.

Usage

CFtime(definition, calendar = "standard", offsets = NULL)

14 CFtime-class

Arguments

definition character. An atomic string describing the time coordinate of a CF-compliant
data file.

calendar character. An atomic string describing the calendar to use with the time dimen-
sion definition string. Default value is "standard".

offsets numeric or character, optional. When numeric, a vector of offsets from the
origin in the time series. When a character vector, timestamps in ISO8601 or
UDUNITS format. When an atomic character string, a timestamp in ISO8601
or UDUNITS format and then a time series will be generated with a separation
between steps equal to the unit of measure in the definition, inclusive of the
definition timestamp. The unit of measure of the offsets is defined by the time
series definition.

Value

An instance of the CFtime class.

Examples

CFtime("days since 1850-01-01", "julian", 0:364)

CFtime("hours since 2023-01-01", "360_day", "2023-01-30T23:00")

CFtime-class CF Metadata Conventions time representation

Description

CF Metadata Conventions time representation

Value

An object of class CFtime.

Slots

datum CFdatum. The atomic origin upon which the offsets are based.

resolution numeric. The average number of time units between offsets.

offsets numeric. A vector of offsets from the datum.

CFtimestamp 15

CFtimestamp Create a vector that represents CF timestamps

Description

This function generates a vector of character strings or POSIXcts that represent the date and time in
a selectable combination for each offset.

Usage

CFtimestamp(cf, format = NULL, asPOSIX = FALSE)

Arguments

cf CFtime. The CFtime instance that contains the offsets to use.

format character. An atomic string with either of the values "date" or "timestamp". If
the argument is not specified, the format used is "timestamp" if there is time
information, "date" otherwise.

asPOSIX logical. If TRUE, for "standard", "gregorian" and "proleptic_gregorian" calendars
the output is a vector of POSIXct - for other calendars the result is NULL. Default
value is FALSE.

Details

The character strings use the format YYYY-MM-DDThh:mm:ss±hh:mm, depending on the format spec-
ifier. The date in the string is not necessarily compatible with POSIXt - in the 360_day calendar
2017-02-30 is valid and 2017-03-31 is not.

For the "standard", "gregorian" and "proleptic_gregorian" calendars the output can also be generated
as a vector of POSIXct values by specifying asPOSIX = TRUE.

Value

A character vector where each element represents a moment in time according to the format spec-
ifier. Time zone information is not represented.

Examples

cf <- CFtime("hours since 2020-01-01", "standard", seq(0, 24, by = 0.25))
CFtimestamp(cf, "timestamp")

cf2 <- CFtime("days since 2002-01-21", "standard", 0:20)
tail(CFtimestamp(cf2, asPOSIX = TRUE))

tail(CFtimestamp(cf2))

tail(CFtimestamp(cf2 + 1.5))

Index

+,CFtime,CFtime-method, 2
+,CFtime,numeric-method, 3
==,CFtime,CFtime-method, 4

CFcalendar (CFdefinition), 5
CFcomplete, 4
CFdefinition, 5
CFfactor, 6
CFfactor(), 8–10
CFfactor_coverage, 8
CFfactor_coverage(), 9
CFfactor_units, 9
CFfactor_units(), 10
CFmonth_days, 10
CFoffsets (CFdefinition), 5
CForigin (CFdefinition), 5
CFparse, 11
CFproperties (CFdefinition), 5
CFrange, 12
CFrange,CFtime-method (CFrange), 12
CFresolution (CFdefinition), 5
CFsubset, 13
CFtime, 13
CFtime-append

(+,CFtime,numeric-method), 3
CFtime-class, 14
CFtime-equivalent

(==,CFtime,CFtime-method), 4
CFtime-merge (+,CFtime,CFtime-method), 2
CFtimestamp, 15
CFtimestamp(), 7
CFtimezone (CFdefinition), 5
CFunit (CFdefinition), 5

16

	+,CFtime,CFtime-method
	+,CFtime,numeric-method
	==,CFtime,CFtime-method
	CFcomplete
	CFdefinition
	CFfactor
	CFfactor_coverage
	CFfactor_units
	CFmonth_days
	CFparse
	CFrange
	CFsubset
	CFtime
	CFtime-class
	CFtimestamp
	Index

