Package ‘PwePred’

April 10, 2025
Type Package
Title Event/Timeline Prediction Model Based on Piecewise Exponential

Imports graphics, grDevices, stats, methods, utils, segmented,
foreach, doSNOW, parallel

Depends survival, fastmatch

Suggests knitr, RColorBrewer, rmarkdown

Version 1.0.0

Maintainer Tianchen Xu <zjph602xutianchen@gmail.com>

Description Efficient algorithm for estimating piecewise exponential hazard models for right-
censored data, and is useful for reliable power calculation, study design, and event/timeline pre-
diction for study monitoring.

License MIT + file LICENSE

Encoding UTF-8

VignetteBuilder knitr

Repository CRAN

Date/Publication 2025-04-10 10:00:02 UTC

NeedsCompilation no

Author Tianchen Xu [aut, cre] (<https://orcid.org/0000-0002-0102-7630>)

Contents
DOOLPWEXPIM L o e e e e e e e 2
bootpwexpm_fit 4
conditional piecewise exponential oL oL 5
cut_dat. L s 7
CVPWEXPIIL . . v o vttt v et e e e e e e e e e e e 9
cvpwexpm_fito e 10
piecewise exponential L. L 12
PIOL_EVENt L e e e e e 14
plot_survival 16
predict . . . Lo e 18

https://orcid.org/0000-0002-0102-7630

2 boot.pwexpm

PWEXPIM © . v v o vt e 20
pwexpm_fit e e 22
simdata 24
sim_followup 28
Index 32

boot . pwexpm Bootstrap a Piecewise Exponential Model

Description

Bootstrap an existing piecewise exponential model or build a piecewise exponential model with
bootstrapping.

Usage

Default S3 method:
boot.pwexpm(Surv, data, nsim=100, breakpoint=NULL, nbreak=0,

exclude_int=NULL, min_pt_tail=5, max_set=1000, seed=1818,
optimizer='mle', tol=1e-4, parallel=FALSE, mc.core=4, ...)

S3 method for class 'pwexpm'
boot.pwexpm(Surv, nsim=100, max_set=1000, seed=1818,

Arguments

Surv

data

nsim
breakpoint
nbreak
exclude_int

min_pt_tail

max_set
seed
optimizer
tol

parallel

mc.core

optimizer="'mle', tol=1e-4, parallel=FALSE, mc.core=4, ...)

a Surv object indicating event time and status or a pwexpm object.

a data frame in which to interpret the variables named in the Surv argument.
the number of repeated bootstrapping.

pre-specified breakpoints. See pwexpm.

total number of breakpoints. See pwexpm.

an interval that excludes any estimated breakpoints. See pwexpm.

the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See pwexpm.

maximum estimated combination of breakpoints. See pwexpm.
a random seed. Do not set seed if seed=NULL.
one of the optimizers: mle, ols, or hybrid. See pwexpm.

the minimum allowed gap between two breakpoints. The gap is calculated as
(max(time)-min(time))=*tol. Keep it as default in most cases.

logical. If TRUE, use doSNOW package to run in parallel.
number of processes allowed to be run in parallel.

internal function reserved.

boot.pwexpm

Details

Use bootstrap to repeatdly call pwexpm to estimate the uncertainty of parameters.

Value

A object of class "boot.pwexpm" is a list containing the following components:

brk estimated breakpoints in each row.

lam estimated piecewise hazard rates in each row.

loglik the log-likelihood of the original model.

AIC the Akaike information criterion of the original model.
BIC the Bayesian information criterion of the original model.
para the parameters used to estimate the model.

The plot function can be used to make a simple plot for boot . pwexpm.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

boot.pwexpm_fit

Examples

event_dist <- function(n)rpwexpm(n, rate = c(0.1, 0.01, 0.2), breakpoint = c¢(5,14))
dat <- simdata(rand_rate = 20, drop_rate = 0.03, total_sample = 1000,

advanced_dist = list(event_dist=event_dist),

add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))

fit_res3 <- pwexpm(Surv(followT, event), data = dat, nbreak = 2)

fit_res_boot <- boot.pwexpm(fit_res3, nsim = 10) # here nsim=10 is for demo purpose,
pls increase it in practice

plot_survival(dat$followT, dat$event, x1lim=c(0,40))

plot_survival(fit_res_boot, col='red', CI_par = list(col='red'))

brk_ci <- apply(fit_res_boot$brk, 2, function(x)quantile(x,c(0.025,0.975)))

abline(v=brk_ci, col='grey', lwd=2)

4 boot.pwexpm_fit
boot.pwexpm_fit Bootstrap a Piecewise Exponential Model
Description
Build a piecewise exponential model with bootstrapping.
Usage
boot.pwexpm_fit(time, event, nsim=100, breakpoint=NULL, nbreak=0,
exclude_int=NULL, min_pt_tail=5, max_set=1000, seed=1818,
optimizer='mle', tol=1e-4, parallel=FALSE, mc.core=4, ...)
Arguments
time observed time from randomization.
event the status indicator. See pwexpm_fit.
nsim the number of repeated bootstrapping.
breakpoint pre-specified breakpoints. See pwexpm_fit.
nbreak total number of breakpoints. See pwexpm_fit.
exclude_int an interval that excludes any estimated breakpoints. See pwexpm_fit.
min_pt_tail the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See pwexpm_fit.
max_set maximum estimated combination of breakpoints. See pwexpm_fit.
seed a random seed. Do not set seed if seed=NULL.
optimizer one of the optimizers: mle, ols, or hybrid. See pwexpm_fit.
tol the minimum allowed gap between two breakpoints. The gap is calculated as
(max(time)-min(time))*tol. Keep it as default in most cases.
parallel logical. If TRUE, use doSNOW package to run in parallel.
mc.core number of processes allowed to be run in parallel.
internal function reserved.
Details
Use bootstrap to repeatdly call pwexpm_fit to estimate the uncertainty of parameters.
Value

A object of class "boot.pwexpm" is a list containing the following components:

brk
lam
logLik

estimated breakpoints in each row.
estimated piecewise hazard rates in each row.

the log-likelihood of the original model.

conditional piecewise exponential 5

AIC the Akaike information criterion of the original model.
BIC the Bayesian information criterion of the original model.
para the parameters used to estimate the model.

The plot function can be used to make a simple plot for boot . pwexpm.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail.com>

See Also

boot . pwexpm

Examples

event_dist <- function(n)rpwexpm(n, rate = c(0.1, 0.01, 0.2), breakpoint = c¢(5,14))
dat <- simdata(rand_rate = 20, drop_rate = 0.03, total_sample = 1000,

advanced_dist = list(event_dist=event_dist),

add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))

fit_res3 <- boot.pwexpm_fit(dat$followT, dat$event, nbreak = 2, nsim = 10)
here nsim=10 is for demo purpose. Pls increase it in practice.

plot_survival(dat$followT, dat$event, xlim=c(0,40))
plot_survival(fit_res3, col='red', CI_par = list(col='red'))

brk_ci <- apply(fit_res3$brk, 2, function(x)quantile(x,c(0.025,0.975)))
abline(v=brk_ci, col='grey', lwd=2)

conditional piecewise exponential
The Conditional Piecewise Exponential Distribution

Description

Distribution function, quantile function and random generation for the piecewise exponential distri-
bution ¢ with piecewise rate rate given t > ¢T'.

Usage

ppwexpm_conditional(q, qT, rate=1, breakpoint=NULL, lower.tail=TRUE,
log.p=FALSE, one_piece, safety_check=TRUE)

gpwexpm_conditional(p, qT, rate=1, breakpoint=NULL, lower.tail=TRUE,
log.p=FALSE, one_piece, safety_check=TRUE)

rpwexpm_conditional(n, qT, rate, breakpoint=NULL)

Arguments

q

p
qT

n
rate

breakpoint

log, log.p
lower.tail

one_piece

safety_check

Details

conditional piecewise exponential

vector of quantiles.
vector of probabilities.

the distribution is conditional on ¢ >qT. qT can be a scalar or a vector with the
same length of q or p.

number of observations. Must be a positive integer with length 1.
a vector of rates in each piece.

a vector of breakpoints. The length is length(rate)-1. Can be NULL if rate
is a single value.

logical; if TRUE, probabilities p are given as log(p).
logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X > z].

(only required when safety_check=FALSE) whether the distribution only has
one piece (i.e., rate is a single value and breakpoint=NULL).

logical; whether check the input arguments; if FALSE, function has better com-
puting performance by skipping all safety checks.

See webpage https://zjph602xtc.github.io/PWEXP/ for more details for its survival function,
cumulative density function, quantile function.

Value

ppwexpm_conditional gives the conditional distribution function, gpwexpm_conditional gives
the conditional quantile function, and rpwexpm_conditional generates conditional random vari-

ables.

The length of the result is determined by g, p or n for ppwexpm_conditional, gpwexpm_conditional
or rpwexpm_conditional. You can only specify a single piecewise exponential distribution every
time you call these functions. This is different from the exponential distribution functions in pack-

age stats.

When the length of qT is 1, then all results are conditional on the same ¢ >qT. In rpwexpm_conditional,

gT must be a scalar. When the length of qT equals to the length of g or p, then each value in the
result is conditional on ¢ >qT for each value in qT.

Arguments rate and breakpoint must match. The length of rate is the length of breakpoint + 1.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

dpwexpm, ppwexpm, gpwexpm, rpwexpm

https://zjph602xtc.github.io/PWEXP/

cut_dat 7

Examples

CDF and qunatile function of conditional piecewise exp with rate 2, 1, 3 given t > 0.1

t <- seq(0.1, 1.2, 0.01)

F2_con <- ppwexpm_conditional(t, qT=0.1, rate=c(2, 1, 3), breakpoint=c(0.3, 0.8))

plot(t, F2_con, type='l', col='red', lwd=2, main="CDF and Quantile Function of
Conditional \nPiecewsie Exp Dist”, xlim=c(@, 1.2), ylim=c(0, 1.2))

lines(F2_con, gpwexpm_conditional(F2_con, qT=0.1, rate=c(2, 1, 3),
breakpoint=c(0.3,0.8)), 1lty=2, lwd=2, col='red')

compare with CDF and quantile function of unconditional piecewise exp with rate 2, 1, 3
t <- seq(@, 1.2, 0.01)
F2 <- ppwexpm(t, rate=c(2, 1, 3), breakpoint=c(0.3,0.8))
lines(t, F2, lwd=2)
lines(F2, gpwexpm(F2, rate=c(2, 1, 3), breakpoint=c(0.3,0.8)), lty=2, lwd=2)
abline(v=0.1, col='grey')
abline(h=0.1, col='grey')
legend('topleft', c('CDF of piecewise exp dist given t > 0.1', 'quantile
function of piecewise exp dist given t > 0.1', 'CDF of piecewise exp dist',
'quantile function of piecewise exp dist'), col=c('red', 'red', 'black', 'black'),
lty=c(1, 2, 1, 2), 1lwd=2)

use rpwexpm_conditional function to generate piecewise exp samples with rate 2, 1, 3 givent > 0.1
r_sample_con <- rpwexpm_conditional (3000, qT=0.1, rate=c(2, 1, 3), breakpoint=c(0.3,0.8))
plot(ecdf(r_sample_con), col='red', lwd=2, main="Empirical CDF of Conditional

Piecewsie Exp Dist”, xlim=c(@, 1.2), ylim=c(0, 1))

compare with its CDF
lines(seq(@.1, 1.2, 0.01), F2_con, lwd=2)
legend('topleft', c('empirial CDF of piecewise exp dist given t > 0.1',
"true CDF of piecewise exp dist given t >0.1'), col=c('red', 'black'), 1ty=c(1,2), lwd=2)

cut_dat Cut Data before a Specified Time

Description
Take a subset of a dataset by constraining the randomization time <= cut time. Additionally, it
updates the follow-up time, censor/event indicator, censor reason, accordingly.
Usage
cut_dat(cut, data, var_randT=NULL, var_followT=NULL, var_followT_abs=NULL,
var_censor=NULL, var_event=NULL, var_censor_reason='status_at_end')
Arguments

cut cut time (from the beginning of the trial); only rows with randomization time <=
cut will be kept.

data a data frame.

8 cut_dat

var_randT character; the variable name of randomization time. If missing, then the ran-
domization time will be treated as 0 and NO subjects will be filtered by cut
time.

var_followT character; the variable name of follow-up time (from randomization)

var_followT_abs
character; the variable name of follow-up time (from the beginning of the trial)

var_censor character; the variable name of censoring (drop-out or death) indicator (1=cen-
sor, O=event)

var_event character; the variable name of event indicator (1=event, O=censor)
var_censor_reason

character; the variable name of censoring reason (character variable). This vari-
able will be created, if data does not contain it.

Details

We first filter rows that randomization time is equal to or less then cut time. Then we modify these
columns (if provided):

* var_followT: change values to (cut - randomization time) if (follow-up time + randomiza-
tion time) > cut

* var_followT_abs: change values to cut if (follow-up time from beginning) > cut

* var_censor: change values to 1 if (follow-up time from beginning) > cut

* var_event: change values to O if (follow-up time from beginning) > cut

* var_censor_reason: change values to “cut’ if (follow-up time from beginning) > cut

Value

A subset data frame with the same columns as data.

var_censor_reason is the only variable that is allowed to be absent in data. The function will
create this variable in the returned data frame and set values ’cut’ to the subjects whose (follow-up
time from beginning) > cut.

Note
The original dataset data will NOT be modified.

Author(s)

Tianchen Xu <zjph60@2xutianchen@gmail . com>

Examples

event_dist <- function(n)rpwexpm(n, rate = c(@.1, .01, 0.2), breakpoint = c¢(5,14))
dat <- simdata(rand_rate = 20, total_sample = 1000, drop_rate = 0.03,
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))
cut <- quantile(dat$randT, 0.8)
train <- cut_dat(var_randT = 'randT', cut = cut, data = dat,

cv.pwexpm 9
var_followT = 'followT', var_followT_abs = 'followT_abs',
var_event = 'event', var_censor_reason = 'censor_reason')
cv.pwexpm Cross Validate a Piecewise Exponential Model
Description

Cross validate an existing piecewise exponential model.

Usage

Default S3 method:
cv.pwexpm(Surv, data, nfold=5, nsim=100, breakpoint=NULL,

nbreak=0, exclude_int=NULL, min_pt_tail=5, max_set=1000, seed=1818,
optimizer='mle', tol=1e-4, parallel=FALSE, mc.core=4, ...)

S3 method for class 'pwexpm'
cv.pwexpm(Surv, nfold=5, nsim=100, max_set=1000, seed=1818,

Arguments

Surv

data

nfold

nsim
breakpoint
nbreak
exclude_int

min_pt_tail

max_set
seed
optimizer
tol

parallel

mc.core

Details

optimizer='mle', tol=1e-4, parallel=FALSE, mc.core=4, ...)

a Surv object indicating event time and status or a pwexpm object.

a data frame in which to interpret the variables named in the Surv argument.
the number of folds used in CV.

the number of simulations.

pre-specified breakpoints. See pwexpm.

total number of breakpoints. See pwexpm.

an interval that excludes any estimated breakpoints. See pwexpm.

the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See pwexpm.

maximum estimated combination of breakpoints. See pwexpm.
a random seed. Do not set seed if seed=NULL.
one of the optimizers: mle, ols, or hybrid. See pwexpm.

the minimum allowed gap between two breakpoints. The gap is calculated as
(max(time)-min(time))*tol. Keep it as default in most cases.

logical. If TRUE, use doSNOW package to run in parallel.
number of processes allowed to be run in parallel.

internal function reserved.

Use cross validation obtain the prediction log likelihood.

10

Value

cv.pwexpm_fit

A object of class "cv.pwexpm" is a numeric vector containing the CV log likelihood in each round
of simulation. The plot function can be used to make a boxplot of the CV log likelihoods from

pwexpm.

Author(s)

Tianchen Xu <zjph60@2xutianchen@gmail . com>

See Also

cv.pwexpm_fit

Examples

event_dist <-

function(n)rpwexpm(n, rate

dat <- simdata(rand_rate = 20, drop_rate
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))

c(0.1, 0.01, 0.2), breakpoint =

0.03,

total_sample = 1000,

here nsim=10 is for demo purpose, pls increase it in practice!!

cv@ <- cv.pwexpm(Surv(followT, event), data=dat, nsim =

cvl <- cv.pwexpm(Surv(followT, event), data=dat, nsim =
cv2 <- cv.pwexpm(Surv(followT, event), data=dat, nsim =
sapply(list(cv@,cvl,cv2), median)

10, nbreak
10, nbreak
10, nbreak

)
»
2)

c(5,14))

cv.pwexpm_fit

Cross Validate a Piecewise Exponential Model

Description

Build and cross validate a piecewise exponential model.

Usage

cv.pwexpm_fit(time, event, nfold=5, nsim=100, breakpoint=NULL,

Arguments
time
event
nfold

nsim

nbreak=0, exclude_int=NULL, min_pt_tail=5, max_set=1000, seed=1818,

optimizer='mle', tol=1e-4, parallel=FALSE, mc.core=4,

observed time from randomization.

the status indicator. See pwexpm_fit.

the number of folds used in CV.

the number of simulations.

>

cv.pwexpm_fit

breakpoint
nbreak
exclude_int

min_pt_tail

max_set
seed
optimizer

tol

parallel

mc.core

Details

11

pre-specified breakpoints. See pwexpm_fit.
total number of breakpoints. See pwexpm_fit.
an interval that excludes any estimated breakpoints. See pwexpm_fit.

the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See pwexpm_fit.

maximum estimated combination of breakpoints. See pwexpm_fit.
arandom seed. Do not set seed if seed=NULL.
one of the optimizers: mle, ols, or hybrid. See pwexpm_fit.

the minimum allowed gap between two breakpoints. The gap is calculated as
(max(time)-min(time))*tol. Keep it as default in most cases.

logical. If TRUE, use doSNOW package to run in parallel.
number of processes allowed to be run in parallel.

internal function reserved.

Use cross validation obtain the prediction log likelihood.

Value

A object of class "cv.pwexpm" is a numeric vector containing the CV log likelihood in each round
of simulation. The plot function can be used to make a boxplot of the CV log likelihoods from

pwexpm.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

CV.pwexpm

Examples

event_dist <- function(n)rpwexpm(n, rate = c(@0.1, 0.01, 0.2), breakpoint = c¢(5,14))
dat <- simdata(rand_rate = 20, drop_rate = 0.03, total_sample = 1000,

advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))

here nsim=10 is for demo purpose, pls increase it in practice!!

cv0d <- cv.pwexpm_fit(dat$followT, dat$event, nsim = 10, nbreak = 0)
cvl <- cv.pwexpm_fit(dat$followT, dat$event, nsim = 10, nbreak = 1)
cv2 <- cv.pwexpm_fit(dat$followT, dat$event, nsim = 10, nbreak = 2)

sapply(list(cv@,cvl,cv2), median)

12 piecewise exponential

piecewise exponential The Piecewise Exponential Distribution

Description

Density, distribution function, quantile function and random generation for the piecewise exponen-
tial distribution with piecewise rate rate.

Usage

dpwexpm(x, rate = 1, breakpoint = NULL, log = FALSE, one_piece, safety_check = TRUE)

ppwexpm(q, rate = 1, breakpoint = NULL, lower.tail = TRUE, log.p = FALSE,
one_piece, safety_check = TRUE)

gpwexpm(p, rate = 1, breakpoint = NULL, lower.tail = TRUE, log.p = FALSE,
one_piece, safety_check = TRUE)

rpwexpm(n, rate = 1, breakpoint = NULL)

Arguments
X, q vector of quantiles.
p vector of probabilities.
n number of observations. Must be a positive integer with length 1.
rate a vector of rates in each piece.
breakpoint a vector of breakpoints. The length is length(rate)-1. Can be NULL if rate
is a single value.
log, log.p logical; if TRUE, probabilities p are given as log(p).
lower.tail logical; if TRUE (default), probabilities are P[X < z], otherwise, P[X > x].
one_piece (only required when safety_check=FALSE) whether the distribution only has

one piece (i.e., rate is a single value and breakpoint=NULL).

safety_check logical; whether check the input arguments; if FALSE, function has better com-
puting performance by skipping all safety checks.

Details

The piecewise distribution function with piecewise rate Aq, ..., A\, is

T

F&) = Argreap[y_(Nost — Ai)ds — At

i=1
ford, <t <d,;1.

See webpage https://zjph602xtc.github.io/PWEXP/ for more details for its hazard function,
cumulative hazard function, survival function, cumulative density function, quantile function.

https://zjph602xtc.github.io/PWEXP/

piecewise exponential 13

Value

dpwexpm gives the density, ppwexpm gives the distribution function, gpwexpm gives the quantile
function, and rpwexpm generates random deviates.

The length of the result is determined by x, g, p or n for dpwexpm, ppwexpm, gpwexpm Or rpwexpm.
You can only specify a single piecewise exponential distribution every time you call these functions.
This is different from the exponential distribution functions in package stats.

Arguments rate and breakpoint must match. The length of rate is the length of breakpoint + 1.

Note

When breakpoint=NULL, the function calls exponential function in stats.

Author(s)

Tianchen Xu <zjph60@2xutianchen@gmail . com>

See Also

ppwexpm_conditional, gpwexpm_conditional, rpwexpm_conditional

Examples

use rpwexpm function to generate piecewise exp samples with rate 2, 1, 3

r_sample <- rpwexpm(50000, rate=c(2, 1, 3), breakpoint=c(0.3, 0.8))

hist(r_sample, freq=FALSE, breaks=200, main="Density of Piecewsie Exp Dist",
xlab="t"', xlim=c(@, 1.2))

piecewise exp density with rate 2, 1, 3

t <- seq(@, 1.5, 0.01)

f2 <- dpwexpm(t, rate=c(2, 1, 3), breakpoint=c(0.3, 0.8))
points(t, f2, col='red', pch=16)

exp distribution can be a special case of piecewise exp distribution

f1 <- dpwexpm(t, rate=2)

lines(t, f1, 1lwd=2)

legend('topright', c('exp dist with rate 2','piecewise exp dist with rate 2, 1,
3', 'histogram of piecewise exp dist with rate 2, 1, 3'),
col=c('black', 'red'), fill=c(NA, NA, 'grey'), border=c('white', 'white',
'black'), lty=c(1, NA, NA), pch=c(NA, 16, NA), 1lwd=2)

CDF of piecewise exp with rate 2, 1, 3

F2 <- ppwexpm(t, rate=c(2, 1, 3), breakpoint=c(0.3, 0.8), lower.tail=TRUE)

plot(t, F2, type='l', col='red', lwd=2, main="CDF and Quantile Function of
Piecewsie Exp Dist”, xlim=c(@, 1.5), ylim=c(@, 1.5))

CDF of exp dist is compatible with our package
F1 <- ppwexpm(t, rate=2, lower.tail=TRUE)
lines(t, F1, lwd=2)

plot quantile functions of both distributions
lines(F1, gpwexpm(F1, rate=2, lower.tail=TRUE), lty=2, lwd=2)

14 plot_event

lines(F2, gpwexpm(F2, rate=c(2, 1, 3), breakpoint=c(0.3,0.8), lower.tail=TRUE),
col="red', 1lty=2, lwd=2)

abline(@, 1, col='grey')

legend('topleft', c('CDF of piecewise exp with rate 2, 1, 3', 'quantile
function of piecewise exp with rate 2, 1, 3', 'CDF of exp with rate 2',
'quantile function of exp with rate 2'), col=c('red', 'red', 'black',
'black'), lty=c(1, 2, 1, 2), lwd=2)

plot_event Plot Cumulative Event Curve

Description

Plot cumulative event curve with right censoring data.

Usage

Default S3 method:

plot_event(time, event, abs_time=TRUE, additional_event=0,
add=FALSE, plot=TRUE, xyswitch=FALSE, ...)

S3 method for class 'predict.pwexpm'

plot_event(time, abs_time=TRUE, add=TRUE, plot=TRUE,
xyswitch=FALSE, eval_at=NULL, ...)

S3 method for class 'predict.boot.pwexpm'

plot_event(time, abs_time=TRUE, alpha=0.1, type='confidence',
add=TRUE, plot=TRUE, xyswitch=FALSE, eval_at=NULL,

show_CI=TRUE, CI_par=NULL, ...)
Arguments

time observed/follow-up time from individual randomization time (abs_time=FALSE)
or from the first subject randomization time (abs_time=TRUE); or a predicted
object from predict.pwexpm, or a predicted object with bootstrapping from
predict.boot.pwexpm.

abs_time logical; if TRUE, time is the time from first randomization of the trial. if
FALSE, time is the time from the randomization of each subject.

event the status indicator, O=censor, 1=event. Other choices are TRUE/FALSE (TRUE
= event).

additional_event
adding the cumulative number of events by a constant number from the begin-

ning.
add logical; if TRUE add lines to current plot.
plot logical; if FALSE, do not plot any lines, but return the line data
xyswitch logical; if TRUE, x-axis will be cumulative number of events and y will be the

time.

plot_event 15

eval_at a vector of the time (when xyswitch=FALSE) or the number of events (when
xyswitch=TRUE) that you want to make prediction on.

alpha the significance level of the confidence interval.

type the type of prediction required. The default confidence returns the confidence
interval without random error; the alternative predictive returns the predictive
interval.

show_CI logical; if TRUE add confidence interval of the estimated event curve.

CI_par a list of parameters to control the apperance of lines of confidence intervals. The

values pass to lines.

other arguments (e.g., lwd, etc.) are passed over to plot.

Details

A convenient function to calculate and plot the cuamulative number of events.

Parameters in . . . are passed to plot function to control the appearance of the event curve; param-
eters in CI_par are passed to lines function to control the appearance of confidence intervals. See
examples for usage.

By default, plot_event plots a data frame in a new figure; and plots a predicted model in existing
figure.

Value
When xyswith=FALSE, the function returns a data frame containing these columns:

time sorted time at eval_at

n_event predicted cumulative number of events
(alpha/2) n_event

(for predict.boot.pwexpm) lower alpha level predicted cumulative number of
events
1-(alpha/2) n_event

(for predict.boot.pwexpm) upper alpha level predicted cumulative number of
events

When xyswith=TRUE, the function returns a data frame containing these columns:

n_event sorted cumulative number of events at eval _at
time predicted required time

(alpha/2) time (for predict.boot.pwexpm) lower alpha level predicted required time
1-(alpha/2) time
(for predict.boot. pwexpm) upper alpha level predicted required time

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

plot_survival

16 plot_survival

Examples

set.seed(1818)
event_dist <- function(n)rpwexpm(n, rate = c(0.1, 0.2), breakpoint = 14)
dat <- simdata(rand_rate = 20, drop_rate = .03, total_sample = 500,
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))
cut <- quantile(dat$randT, 0.8)

train <- cut_dat(var_randT = 'randT', cut = cut, data = dat,
var_followT = 'followT', var_followT_abs = 'followT_abs',
var_event = 'event', var_censor_reason = 'censor_reason')

fit_res3 <- pwexpm(Surv(followT, event), data=train, nbreak = 1)
fit_res_boot <- boot.pwexpm(fit_res3, nsim = 8) # here nsim=8 is for demo purpose,
pls increase it in practice

drop_indicator <- ifelse(train$censor_reason=="drop_out' & !is.na(train$censor_reason),1,0)
fit_res_censor <- pwexpm_fit(train$followT, drop_indicator, nbreak = 0)
fit_res_censor_boot <- boot.pwexpm(fit_res_censor, nsim = 8)

cut_indicator <- train$censor_reason=="'cut'
cut_indicator[is.na(cut_indicator)] <- @

predicted_boot <- predict(fit_res_boot, cut_indicator = cut_indicator,
analysis_time = cut, censor_model=fit_res_censor_boot,
future_rand=list(rand_rate=20, total_sample=NROW(dat)-NROW(train)))

plot_event(train$followT_abs, train$event, xlim=c(@,69), ylim=c(0,500))
plot_event(predicted_boot, eval_at = seq(40,90,5), CI_par = list(lty=3, lwd=2))

plot_event(train$followT_abs, train$event, xyswitch = TRUE, ylim=c(0,69), xlim=c(0,400))
plot_event(predicted_boot, xyswitch = TRUE, eval_at = seq(250,400,50))

plot_survival Plot Survival Curve

Description

Plot KM curve with right censoring data or the survival curve of a fitted piecewise exponential
model.

Usage

Default S3 method:

plot_survival(time, event, add=FALSE, conf.int=FALSE, mark.time=TRUE,
lwd=2, xlab='Follow-up time', ylab='Survival function', ...)

S3 method for class 'pwexpm'

plot_survival(time, add=TRUE, show_breakpoint=TRUE,
breakpoint_par=NULL, ...)

S3 method for class 'boot.pwexpm'

plot_survival 17

plot_survival(time, add=TRUE, alpha=0.1, show_breakpoint=TRUE,

breakpoint_par=NULL, show_CI=TRUE, CI_par=NULL, ...)
Arguments
time observed time from randomization or a pwexpm/ boot . pwexpm object.
event the status indicator, normally O=censor, 1=event. Other choices are TRUE/FALSE
(TRUE = event).
add logical; if TRUE add lines to current plot.

show_breakpoint
logical; if TRUE add vertial dashed lines to indicate breakpoints.

breakpoint_par a list of parameters to control the apperance of vertical lines of breakpoionts.
The values pass to abline.

alpha the significance level of the confidence interval.

show_CI logical; if TRUE add confidence interval of the estimated curve. For KM esit-
mator, use conf.int=TRUE to show CI band.

CI_par a list of parameters to control the apperance of lines of confidence intervals. The
values pass to lines.

conf.int determines whether pointwise confidence intervals will be plotted. Passed over
to plot.survfit.

mark. time controls the labeling of the curves. Passed over to plot.survfit.

lwd line width of the KM curve.

xlab x label.

ylab y label.

other arguments are passed over to plot.survfit (default method) or plot (for
class pwexpm).

Details

For the default method, this a wrapper of plot.survfit function to plot right censoring data.

For class pwexpm, parameters in ... are passed to plot function to control the appearance of the
survival curve; parameters in breakpoint_par are passed to abline function to control the appear-
ance of vertical lines of breakpoints. See examples for usage.

For class boot. pwexpm, parameters in ... are passed to plot function to control the appearance
of the survival curve; parameters in breakpoint_par are passed to abline function to control the
appearance of vertical lines of breakpoints; parameters in CI_par are passed to lines function to
control the appearance of confidence intervals. See examples for usage.

Value

No return value.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

18

See Also

plot_event

Examples

event_dist <- function(n)rpwexpm(n, rate

predict

c(0.1, 0.01, 0.2), breakpoint = c¢(5,14))

dat <- simdata(rand_rate = 20, drop_rate = 0.03, total_sample = 1000,

advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))

plot_survival(dat$followT, dat$event, x1im=c(0,40))

fit_res <- pwexpm(Surv(followT, event), data = dat, nbreak = 2)
plot_survival(fit_res, col='red', lwd=3, breakpoint_par = list(col='grey', 1lwd=2.5))

predict

Predict Events for Piecewise Exponential Model

Description

Obtain event prediction and (optionally) confidence interval from a piecewise exponential model.

Usage

S3 method for class 'pwexpm'

predict(object, cut_indicator=NULL, analysis_time, censor_model=NULL,
n_each=100, future_rand=NULL, seed=1818, ...)

S3 method for class 'boot.pwexpm'

predict(object, cut_indicator=NULL, analysis_time, censor_model=NULL,
n_each=10, future_rand=NULL, seed=1818, ...)

Arguments

object

cut_indicator

analysis_time

censor_model

n_each

a pwexpm or boot . pwexpm object. It is the event model for the primary endpoint.

(optional) A vector indicates which subject is censored due to the end of the trial.

The length of the vector is the number of rows of the data used in event_model/event_model_boot.
Value 0 means the subject had event or drop-out or death before the end of the

trial; 1 means the subject didn’t have any of these. See details.

the analysis time. This is the time length from the start of the trial to the time
collecting data for the model.

an object of class pwexpm (or boot . pwexpm). It is the censoring model for drop-
out and death.

the number of iterations for each bootstrapping sample to obtain predicitive CI.
Typically, a value of 10 to 100 should be enough.

predict 19

future_rand the randomization curve in the following times. Can be NULL if all subjects have
been randomized. You can specify future rand rate and future total number
of samples to be randomized by list(rand_rate= ,total_sample=) or spec-
ify the future number of randomization each month by list(n_rand=). See
details.

seed a random seed. Do not set seed if seed=NULL.

internal function reserved.

Details

The prediction will have a confidence interval only if the event model and censor model are boot-
strap models.

cut_indicator indicates the status of each subject in the event_model/event_model_boot model
at the end of the trial. Value 1 means the subject didn’t have events, drop-out or death at the end
of the trial (or say, the subject was censored due to the end of the trial). When cut_indicator is
NOT provided, we assign value 1 to the subject who didn’t have event (or drop-out, or death) in
both event_model/event_model_boot and censor_model/censor_model_boot models.

future_rand is a list determining the parameter of randomization curve in the following times. For
example, you specify randomization rate=10pt/month and total sample size=1000 by 1ist(rand_rate=10,
total_sample=1000) or specify the number of randomization each month (e.g., 10,15,30,30 in four
months) by list(n_rand=c(10,15,390,30)).

Value

A object of class "predict.pwexpm" or "predict.boot.pwexpm" is a list containing the following

components:
event_fun number of events vs. time curve function in each bootstrap.
event_model the event model for the primary endpoint.

censor_model the censoring model for drop-out and death.

nsim the number of repeated bootstrapping. nsim=1 for non-bootstrapped model.
bootstrap a logical value indicating if the event_model is a bootstrapped model.
para the parameters used to conduct the prediction procedure.

This returned object should be used in plot_event function for summarizing its result.

Author(s)

Tianchen Xu <zjph60@2xutianchen@gmail . com>

See Also

plot_event

20 pwexpm

Examples

set.seed(1818)
event_dist <- function(n)rpwexpm(n, rate = c(0.1, 0.2), breakpoint = 14)
dat <- simdata(rand_rate = 20, drop_rate = 0.03, total_sample = 500,
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))
cut <- quantile(dat$randT, 0.8)

train <- cut_dat(var_randT = 'randT', cut = cut, data = dat,
var_followT = 'followT', var_followT_abs = 'followT_abs',
var_event = 'event', var_censor_reason = 'censor_reason')

fit_res3 <- pwexpm(Surv(followT, event), data=train, nbreak = 1)
fit_res_boot <- boot.pwexpm(fit_res3, nsim = 8) # here nsim=8 is for demo purpose,
pls increase it in practice

drop_indicator <- ifelse(train$censor_reason=="drop_out' & !is.na(train$censor_reason),1,0)
fit_res_censor <- pwexpm_fit(train$followT, drop_indicator, nbreak = 0)
fit_res_censor_boot <- boot.pwexpm(fit_res_censor, nsim = 8)

cut_indicator <- train$censor_reason=='cut'
cut_indicator[is.na(cut_indicator)] <- @

predicted_boot <- predict(fit_res_boot, cut_indicator = cut_indicator,
analysis_time = cut, censor_model=fit_res_censor_boot,
future_rand=list(rand_rate=20, total_sample=NROW(dat)-NROW(train)))

plot_event(train$followT_abs, train$event, xlim=c(@,69), ylim=c(0,500))
plot_event(predicted_boot, eval_at = seq(40,90,5), CI_par = list(lty=3, lwd=2))

plot_event(train$followT_abs, train$event, xyswitch = TRUE, ylim=c(@,69), xlim=c(0,400))
plot_event(predicted_boot, xyswitch = TRUE, eval_at = seq(250,400,50))

pwexpm Fit the Piecewise Exponential Distribution

Description
Fit the piecewise exponential distribution with right censoring data. User can specifity all break-
points, some of the breakpoints or let the function estimate the breakpoints.
Usage
pwexpm(Surv, data, breakpoint=NULL, nbreak=0, exclude_int=NULL, min_pt_tail=5,
max_set=10000, seed=1818, trace=FALSE, optimizer='mle', tol=1e-4)
Arguments

Surv a Surv object indicating event time and status.

data a data frame in which to interpret the variables named in the Surv argument.

pwexpm 21

breakpoint fixed breakpoints. Pre-specifity some breakpionts. The maximum value must be
earlier than the last event time.

nbreak total number of breakpoints in the model. This number includes the points
specified in breakpoint. If nbreak=NULL, then nbreak=ceiling(8*(# unique
events)”0.2).

exclude_int an interval that excludes any estimated breakpoints (e.g., exclude_int=c(10, Inf)
will exclude any estimated breakpoints after t=10). See details.

min_pt_tail the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See details.

max_set maximum estimated combination of breakpoints.

seed arandom seed. Do not set seed if seed=NULL.

trace (internal use) logical; if TRUE, the returned data frame contains the log-likelihood
of all possible breakpoints instead of the one with maximum likelihood.

optimizer one of the optimizers: mle, ols, or hybrid.

tol the minimum allowed gap between two breakpoints. The gap is calculated as

(max(time)-min(time))*tol. Keep it as default in most cases.

Details

See webpage https://zjph602xtc.github.io/PWEXP/ for a detailed description of the model
and optimizers.

If user specifies breakpoint, we will check the values to make the model identifiable. Any break-
points after the last event time will be removed; Any breakpoints before the first event time will be
removed; a mid-point will be used if there are NO events between any two concesutive breakpoints.
A warning will be given.

If user sets nbreak=NULL, then the function will automatically apply nbreak=ceiling (8 (# unique
events)”0.2). This empirical number of breakpoints is for the reference below, and it may be too
large in many cases.

Argument exclude_int is a vector of two values such as exclude_int=c(a, b) (b can be Inf). It
defines an interval that excludes any estimated breakpoints. It is helpful when excluding breakpoints
that are too close to the tail.

In order to obtain a more robust hazard rate estimation of the tail, user can set min_pt_tail to the
minimum number of events for estimating the tail (last piece of the piecewise exponential). It only
works for optimizer="mle"'.

Value

A object of class "pwexpm" is a list containing the following components:

brk estimated breakpoints.

lam estimated piecewise hazard rates.

loglik the log-likelihood of the model.

AIC the Akaike information criterion of the model.

BIC the Bayesian information criterion of the model.

https://zjph602xtc.github.io/PWEXP/

22 pwexpm_fit

para the parameters used to estimate the model.

The generic accessor functions AIC, BIC, loglLik can be used to extract various useful statistics
from pwexpm. The plot function can be used to make a simple plot for pwexpm.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

References

Muller, H. G., & Wang, J. L. (1994). Hazard rate estimation under random censoring with varying
kernels and bandwidths. Biometrics, 61-76.

See Also

pwexpm_fit, boot.pwexpm, cv.pwexpm

Examples

event_dist <- function(n)rpwexpm(n, rate=c(@.1, @.01, 0.2), breakpoint=c(5,14))
dat <- simdata(rand_rate = 20, total_sample = 1000, drop_rate = 0.03,
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))
cut <- quantile(dat$randT, 0.8)

train <- cut_dat(var_randT = 'randT', cut = cut, data = dat,
var_followT = 'followT', var_followT_abs = 'followT_abs',
var_event = 'event', var_censor_reason = 'censor_reason')

fit_a@ <- pwexpm(Surv(followT, event), data=train, breakpoint = c(5,14))
fit_al <- pwexpm(Surv(followT, event), data=train, nbreak = 2, breakpoint = 14)
fit_b@ <- pwexpm(Surv(followT, event), data=train, nbreak = 0)

fit_b1l <- pwexpm(Surv(followT, event), data=train, nbreak = 1)
fit_b2 <- pwexpm(Surv(followT, event), data=train, nbreak = 2)
pwexpm_fit Fit the Piecewise Exponential Distribution

Description

Fit the piecewise exponential distribution with right censoring data. User can specifity all break-
points, some of the breakpoints or let the function estimate the breakpoints.

Usage

pwexpm_fit(time, event, breakpoint=NULL, nbreak=0, exclude_int=NULL, min_pt_tail=5,
max_set=10000, seed=1818, trace=FALSE, optimizer='mle', tol=1e-4)

pwexpm_fit 23

Arguments

time observed time from randomization. For right censored data, this is the follow-up
time.

event the status indicator, normally O=censor, 1=event. Other choices are TRUE/FALSE
(TRUE = event).

breakpoint fixed breakpoints. Pre-specifity some breakpionts. The maximum value must be
earlier than the last event time.

nbreak total number of breakpoints in the model. This number includes the points

specified in breakpoint. If nbreak=NULL, then nbreak=ceiling(8*(# unique
events)”0.2).

exclude_int an interval that excludes any estimated breakpoints (e.g., exclude_int=c(10, Inf)
will exclude any estimated breakpoints after t=10). See details.

min_pt_tail the minimum number of events used for estimating the tail (the hazard rate of
the last piece). See details.

max_set maximum estimated combination of breakpoints.

seed arandom seed. Do not set seed if seed=NULL.

trace (internal use) logical; if TRUE, the returned data frame contains the log-likelihood
of all possible breakpoints instead of the one with maximum likelihood.

optimizer one of the optimizers: mle, ols, or hybrid.

tol the minimum allowed gap between two breakpoints. The gap is calculated as

(max(time)-min(time))=*tol. Keep it as default in most cases.

Details

See webpage https://zjph602xtc.github.io/PWEXP/ for a detailed description of the model
and optimizers.

If user specifies breakpoint, we will check the values to make the model identifiable. Any break-
points after the last event time will be removed; Any breakpoints before the first event time will be
removed; a mid-point will be used if there are NO events between any two concesutive breakpoints.
A warning will be given.

If user sets nbreak=NULL, then the function will automatically apply nbreak=ceiling(8* (# unique
events)*0.2). This empirical number of breakpoints is for the reference below, and it may be too
large in many cases.

Argument exclude_int is a vector of two values such as exclude_int=c(a, b) (b can be Inf). It
defines an interval that excludes any estimated breakpoints. It is helpful when excluding breakpoints
that are too close to the tail.

In order to obtain a more robust hazard rate estimation of the tail, user can set min_pt_tail to the
minimum number of events for estimating the tail (last piece of the piecewise exponential). It only
works for optimizer="'mle"'.

Value

A object of class "pwexpm" is a list containing the following components:

brk estimated breakpoints.

https://zjph602xtc.github.io/PWEXP/

24

lam
loglLik
AIC
BIC

para

estimated piecewise hazard rates.

the log-likelihood of the model.

the Akaike information criterion of the model.

the Bayesian information criterion of the model.

the parameters used to estimate the model.

simdata

The generic accessor functions AIC, BIC, loglLik can be used to extract various useful statistics
from pwexpm. The plot function can be used to make a simple plot for pwexpm.

Author(s)

Tianche

References

n Xu <zjph60@2xutianchen@gmail.com>

Muller, H. G., & Wang, J. L. (1994). Hazard rate estimation under random censoring with varying
kernels and bandwidths. Biometrics, 61-76.

See Also

pwexpm, boot.pwexpm, cv.pwexpm

Examples

event_dist <- function(n)rpwexpm(n, rate=c(@0.1, 0.01, 0.2), breakpoint=c(5,14))

dat <- simdata(rand_rate = 20, total_sample = 1000, drop_rate = 0.03,
advanced_dist = list(event_dist=event_dist),
add_column = c('censor_reason', 'event', 'followT', 'followT_abs'))
cut <- quantile(dat$randT, 0.8)
train <- cut_dat(var_randT = 'randT', cut = cut, data = dat,
var_followT = 'followT', var_followT_abs = 'followT_abs',
var_event = 'event', var_censor_reason = 'censor_reason')
fit_a0 <- pwexpm_fit(train$followT, train$event, breakpoint = c(5,14))
fit_al <- pwexpm_fit(train$followT, train$event, nbreak = 2, breakpoint = c(14))
fit_b@ <- pwexpm_fit(train$followT, train$event, nbreak = 0)
fit_b1l <- pwexpm_fit(train$followT, train$event, nbreak = 1)
fit_b2 <- pwexpm_fit(train$followT, train$event, nbreak = 2)
simdata Simulate Survival Data
Description

simdata is used to simulate a clinical trial data with time-to-event endpoints.

simdata

Usage

25

simdata(group="Group 1", strata="Strata 1", allocation=1,
event_lambda=NA, drop_rate=NA, death_lambda=NA, n_rand=NULL,
rand_rate=NULL, total_sample=NULL, add_column=c('followT', 'event'),
simplify=TRUE, advanced_dist=NULL)

Arguments

group
strata

allocation

event_lambda

drop_rate

death_lambda

n_rand

rand_rate

total_sample

add_column

simplify

advanced_dist

Details

a character vector of the names of each group (e.g., c('treatment', 'control")).
a character vector of the names of strata in groups (e.g., c('young', '0old")).

the relative ratio of sample size in each subgroup (groupxstrata). See details.
The value will be recycled if the length is less than needed.

the hazard rate of the primary endpoint (event). See details. The value will be
recycled if the length is less than needed.

(optional) the drop-out rate (patients/month). Not hazard rate. See details. The
value will be recycled if the length is less than needed.

(optional) the hazard rate of death. The value will be recycled if the length is
less than needed.

(required when rand_rate=NULL) a vector of the number of randomization each
month; can be non-integers.

(required when n_rand=NULL) the randomization rate (patients/month; can be
non-integer).
(required when n_rand=NULL) total scheduled sample size.
request additional columns of the returned data frame.
Valid options are:
* 'eventT_abs': absolute event time from the beginning of the trial (=eventT+randT)
* 'dropT_abs': absolute drop-out time from the beginning of the trial (=dropT+randT)
* 'deathT_abs': absolute death time from the beginning of the trial (=deathT+randT)
* 'censor': censoring (drop-out or death) indicator
* 'event': event indicator
* 'censor_reason': censoring reason ("drop_out’,’death’,’ never_event’(eventT=inf))
e 'followT': follow-up time (true observed time) from randT
e 'followT_abs': absolute follow-up time from the beginning of the trial
(=followT+randT)

whether drop unused columns (e.g., the group variable when there is only one
group). See details.

use user-specified distributions for event, drop-out and death. A list containing
random generation functions. See details and examples.

See webpage https://zjph602xtc.github.io/PWEXP/ for a diagram illustration of the relation-
ship between returned variables.

https://zjph602xtc.github.io/PWEXP/

26 simdata

The total number of subgroups will be "# treatment groups’ * *# strata’. The strata variable
will be distributed into each treatment group. For example, if group=c('trt', 'placebo’),
strata=c('A','B','C"), then there will be 6 subgroups: trt+A, trt+B, trt+C, placebo+A, placebo+B,
placebo+C. The lengths of allocation, event_lambda, drop_rate, death_lambda should be 6 as
well. Note that the values will be recycled for these variables. For example, if allocation=c(1,2,3),
then the proportion of 6 subgroups is actually 1:2:3:1:2:3, which means 1:1 ratio for groups, 1:2:3
ratio in each stratum.

The event_lambda () is the hazard rate of the interested events. The density function of events is
f(t) = Xe~***. Similarly, the death_lambda is the hazard rate of death.

The drop_rate is the probability of drop-out at ¢ = 1, which means the hazard rate of drop-out is
—log(1 — drop,ate) (or say, drop_rate=1 — e~hazardrate,

When simplify=TRUE, these columns will NOT be included:

* group when only one group is specified

* strata when only one stratum is specified
* eventT when event_lambda=NA

e dropT when drop_rate=NA

* deathT when death_lambda=NA

advanced_dist is used to define non-exponential distributions for event, drop-out or death. Itis a

list containing at least one of the elements: event_dist, drop_dist, death_dist. Each element

has random generation functions for each subgroups. For example, advanced_dist=1list(event_dist=c(functionl,
function2), drop_dist=c(function3, function4)). Here functionl, function3 are the event,

drop-out generation function for the first subgroup; function2, function4 for the second. If

there is a third subgroup, function1, function3 will be reused. Each data generation function

(functionX) is a function with only one input argument n (sample size). If any of the event_dist,

drop_dist, death_dist is missing, then search for event_lambda, drop_rate, death_lambda to

generate a exp distribution; if they are also missing, then the corresponding variable will not be

generated .

Value

A data frame containing the some of these columns:

ID subject ID

group group indicator

strata stratum indicator

randT randomization time (from the beginning of the trial)
eventT event time (from randT)

eventT_abs event time (from the beginning of the trial)

dropT drop-out time (from randT)

dropT_abs drop-out time (from the beginning of the trial)
deathT death time (from randT)

deathT_abs death time (from the beginning of the trial)

simdata 27

censor censoring (drop-out or death) indicator

censor_reason censoring reason (’drop_out’,’death’, never_event’(followT=inf))

event event indicator

followT follow-up time / observed time (from randT)

followT_abs follow-up time / observed time (from the beginning of the trial)
Note

event_lambda, drop_rate, death_lambda can be 0, which means the corresponding subgroup
will have an Inf value for each variable.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

rpwexpm, rpwexpm_conditional

Examples

Two groups with two strata. In the treatment group, there is a treatment

sensitive stratum and a non-sensitive stratum. In the placebo group, all

subjects are the same. Treatment:place=1:2. Drop rate=1% only in treatment group.

dat <- simdata(group=c('trt', 'place'), strata = c('sensitive', 'non-sensitive'),
allocation = ¢(1,1,2,2), rand_rate = 20, total_sample = 1000,
event_lambda = c(0.1, 0.2, 0.01, 0.01),
drop_rate = c(0.01, 0.01, 0, 0))

randomized subjects

table(dat$group,dat$strata)

randomization curve

plot(sort(dat$randT), 1:1000, xlab='time', ylab='randomized subjects')

event time in treatment group

plot(ecdf(dat$eventT[dat$group=="trt' & dat$strata=='sensitive'l))

lines(ecdf (dat$eventT[dat$group=="trt' & dat$strata=='non-sensitive']), col='red")

One group. Event follows a piecewise exponential distribution; drop-out follows
a Weibull; death follows a exponential.
dist_trt <- function(n)rpwexpm(n, rate=c(0.01, 0.05, 0.01), breakpoint = c(30,60))
dist_placebo <- function(n)rpwexpm(n, rate=c(0.01, 0.005), breakpoint = c(50))
dat <- simdata(group = c('trt', 'placebo'), n_rand = c(rep(10,50),rep(20,10)),
death_lambda = 0.01,
advanced_dist = list(event_dist=c(dist_trt, dist_placebo),
drop_dist=function(n)rweibull(n,3,40)))
randomized subjects
table(dat$group)
randomization curve
plot(sort(dat$randT), 1:700, xlab='time', ylab='randomized subjects')
event time in both groups
plot(ecdf(dat$eventT[dat$group=="trt']), xlim=c(0@,100))

28

sim_followup

lines(ecdf (dat$eventT[dat$group=="placebo']), col='red"')

drop-out time

plot(ecdf(dat$dropT), xlim=c(0,100))

mixture cure distribution, 20% of the subject are cured and will not have events
dat <- simdata(strata=c('cure', 'non-cure'), allocation=c(20,80),

event_lambda=c(@, 0.38), n_rand = rep(20,30),

add_column = c('eventT_abs', 'censor', 'event',

'censor_reason', 'followT', 'followT_abs'))

sim_followup

Estimate follow up time and number of events by simulation

Description

sim_follwup is used to estimate follow-up time and number of events (given calander time, or
number of randomized samples, or number of events).

Usage

sim_followup(at, type = 'calander', group="Group 1", strata='Strata 1',

allocation=1, event_lambda=NA, drop_rate=NA, death_lambda=NA,
n_rand=NULL, rand_rate=NULL, total_sample=NULL, extra_follow=0,
by_group=FALSE, by_strata=FALSE, advanced_dist=NULL,

stat=c(mean, median, sum), follow_up_endpoint=c('death', 'drop_out',
'cut'), count_in_extra_follow=FALSE, count_insufficient_event=FALSE,

Arguments

at

type

group

strata

allocation

event_lambda

drop_rate

start_date=NULL, rep=300, seed=1818)

specify a vector of occasions. When type="'calander’, at is the time from fisrt
randomization; when type='event', at is the number of accumulated events;
when type="sample’, at is the number of randomized samples.

specify the type of at. Must be 'calander’, event or sample.

a character vector of the names of each group (e.g., c('treatment', 'control")).
See simdata.

a character vector of the names of strata in groups (e.g., c('young', '0old")).
See simdata.

the relative ratio of sample size in each subgroup (group*strata). The value
will be recycled if the length is less than needed. See simdata.

the hazard rate of the primary endpoint (event). The value will be recycled if the
length is less than needed. See simdata.

(optional) the drop-out rate (patients/month). Not hazard rate. The value will be
recycled if the length is less than needed. See simdata.

sim_followup 29

death_lambda (optional) the hazard rate of death. The value will be recycled if the length is
less than needed. See simdata.

n_rand (required when rand_rate=NULL) a vector of the number of randomization each
month; can be non-integers. See simdata.

rand_rate (required when n_rand=NULL) the randomization rate (patients/month; can be
non-integer). See simdata.

total_sample (required when n_rand=NULL) total scheduled sample size. See simdata.

extra_follow delay the analysis time by extra time (extra_follow) after the time specified
by at. See details.

by_group logical; if TRUE, also return results by each group.
by_strata logical; if TRUE, also return results by each stratum.

advanced_dist use user-specified distributions for event, drop-out and death. A list containing
random generation functions. See details and examples in simdata.

stat a vector of functions to summarize the follow-up time. See example.
follow_up_endpoint
Which endpoints can be regarded as the end of follow-up. Choose from ’death’,
’drop_out’, ’cut’ (censored at the end of the trial) or "event’.’
count_in_extra_follow
logical; whether to count subjects who are randomized after the time spcified by
at but before the time specified by at + extra_follow.
count_insufficient_event
logical; only affects the result when type="event'. If TRUE, for samples that
cannot achieve required number of events, the last follow-up time is the analysis
time. If FALSE, these samples will be dropped.

start_date the start date of the first randomization; in the format: "2000-01-30"
rep number simulated iterations.
seed a random seed. Do not set seed if seed=NULL.

Details

See the help document of simdata for most arguments details.

When type='calander’', the function estimates the follow-up time and number of events at time
at plus extra_follow; when type='event', the function estimates these at the time when total
number of events is at plus time extra_follow; when type='sample’, the function estimates
these at the time when total number of randomized subjects is at plus time extra_follow.

The stat specifies a vector of user defined functions. Each of them must take a vector of individual
follow-up time as input and return a single summary value. See example.
Value

A data frame containing the some of these columns:

ID subject ID

group group indicator

strata stratum indicator

randT randomization time (from the beginning of the trial)
eventT event time (from randT)

eventT_abs event time (from the beginning of the trial)

dropT drop-out time (from randT)

dropT_abs drop-out time (from the beginning of the trial)
deathT death time (from randT)

deathT_abs death time (from the beginning of the trial)

censor censoring (drop-out or death) indicator

censor_reason
event
followT

censoring reason ("drop_out’,’death’, never_event’ (followT=inf))
event indicator

follow-up time / observed time (from randT)

sim_followup

followT_abs follow-up time / observed time (from the beginning of the trial)

Note

event_lambda, drop_rate, death_lambda can be 0, which means the corresponding subgroup
will have an Inf value for each variable.

Author(s)

Tianchen Xu <zjph602xutianchen@gmail . com>

See Also

simdata

Examples

Two groups. Treatment:place=1:2. Drop rate=3%/month. Hazard ratio=0.7.

define the piecewiese exponential event generation function
myevent_dist_trt <- function(n)rpwexpm(n, rate=c(0.1, 0.01, 0.2)*0.7, breakpoint=c(5,14))
myevent_dist_con <- function(n)rpwexpm(n, rate=c(@.1, 0.01, 0.2), breakpoint=c(5,14))

user defined summary function, the proportion of subjects that follow more than 12 month
prop_12 <- function(x)mean(x >= 12)

estimate the event curve or timeline:

(here rep=60 is for demo purpose only, please increase this value in practice!)

event_curve <- sim_followup(at=seq(20,90,10), type = 'calendar', group = c('trt','con'),
rand_rate = 20, total_sample = 1000, drop_rate = 0.03, allocation = 1:2,
advanced_dist = list(event_dist=c(myevent_dist_trt, myevent_dist_con)),
by_group = TRUE, stat = c(median, mean, prop_12), start_date = "2020-01-01",
rep=60)

time_curve <- sim_followup(at=seq(200,600,100), type = 'event', group = c('trt','con'),
rand_rate = 20, total_sample = 1000, drop_rate = .03, allocation = 1:2,

sim_followup 31

advanced_dist = list(event_dist=c(myevent_dist_trt, myevent_dist_con)),
stat = c(median, mean, prop_12), start_date = "2020-01-01", rep=60)

plot event curve or timeline

plot(event_curveT_allanalysis_time_c, event_curveT_allevent, xlab='Time',

ylab="Number of events', type='b')
plot(time_curveT_allevent, time_curveT_allanalysis_time_c, xlab='Number of

events', ylab='Time', type='b")

Index

abline, 17

boot.pwexpm, 2, 5, 17, 18, 22, 24
boot.pwexpm_fit, 3, 4

conditional piecewise exponential, 5

cut_dat, 7
cv.pwexpm, 9, 11,22, 24
cv.pwexpm_fit, 10, 10

dpwexpm, 6
dpwexpm (piecewise exponential), 12

lines, 15,17

piecewise exponential, 12

plot, 15,17

plot.boot.pwexpm (boot.pwexpm), 2
plot.cv.pwexpm (cv.pwexpm), 9

plot.predict.boot.pwexpm (predict), 18

plot.predict.pwexpm (predict), 18
plot.pwexpm (pwexpm), 20
plot.survfit, 17
plot_event, 14, 18, 19
plot_survival, 15,16
ppwexpm, 6
ppwexpm (piecewise exponential), 12
ppwexpm_conditional, 13
ppwexpm_conditional (conditional
piecewise exponential), 5
predict, 18
predict.boot.pwexpm, /4
predict.boot.pwexpm (predict), 18
predict.pwexpm, /4
predict.pwexpm (predict), 18
print.boot.pwexpm (boot.pwexpm), 2
print.cv.pwexpm (cv.pwexpm), 9

print.predict.boot.pwexpm (predict), 18

print.predict.pwexpm (predict), 18
print.pwexpm (pwexpm), 20
pwexpm, 2, 3,9, 17, 18, 20, 24

pwexpm_fit, 4, 10, 11, 22,22

gpwexpm, 6

gpwexpm (piecewise exponential), 12

gpwexpm_conditional, /3

gpwexpm_conditional (conditional
piecewise exponential), 5

rpwexpm, 6, 27

rpwexpm (piecewise exponential), 12

rpwexpm_conditional, 13, 27

rpwexpm_conditional (conditional
piecewise exponential), 5

sim_followup, 28
simdata, 24, 28-30
Surv, 2, 9, 20

	boot.pwexpm
	boot.pwexpm_fit
	conditional piecewise exponential
	cut_dat
	cv.pwexpm
	cv.pwexpm_fit
	piecewise exponential
	plot_event
	plot_survival
	predict
	pwexpm
	pwexpm_fit
	simdata
	sim_followup
	Index

