The bgms package implements Bayesian methods for analyzing graphical models of binary and ordinal variables. It estimates main effects (category thresholds) and pairwise interactions in an ordinal Markov random field (MRF), with optional Bayesian edge selection via spike–and–slab priors. The package provides two main entry points:
bgm()
for one-sample designs (single network),bgmCompare()
for independent-sample designs (group
comparisons).This vignette walks through the basic workflow: fitting a model, summarizing posterior output, and visualizing results.
The dataset Wenchuan
contains responses from survivors
of the 2008 Wenchuan earthquake on posttraumatic stress items. Here, we
analyze a subset of the first five items as a demonstration.
The main entry point is bgm()
for single-group models
and bgmCompare()
for multiple-group comparisons.
Note: During fitting, progress bars are shown in interactive sessions. In this vignette, they are suppressed for clarity. Sampling can take a while; the progress bars usually help track progress.
summary(fit)
#> Posterior summaries from Bayesian estimation:
#>
#> Category thresholds:
#> mean mcse sd n_eff Rhat
#> intrusion (1) 0.489 0.006 0.233 1596.771 1.010
#> intrusion (2) -1.888 0.010 0.340 1053.243 1.024
#> intrusion (3) -4.828 0.019 0.556 827.554 1.025
#> intrusion (4) -9.490 0.031 0.897 860.034 1.023
#> dreams (1) -0.597 0.005 0.190 1610.037 1.002
#> dreams (2) -3.802 0.010 0.341 1174.409 1.003
#> ... (use `summary(fit)$main` to see full output)
#>
#> Pairwise interactions:
#> mean sd mcse n_eff Rhat
#> intrusion-dreams 0.632 0.002 0.064 1716.164 1.000
#> intrusion-flash 0.338 0.001 0.062 1823.683 1.000
#> intrusion-upset 0.191 0.076 0.006 165.946 1.033
#> intrusion-physior 0.198 0.066 0.004 323.018 1.005
#> dreams-flash 0.498 0.001 0.060 2264.802 1.000
#> dreams-upset 0.231 0.056 0.002 721.220 1.008
#> ... (use `summary(fit)$pairwise` to see full output)
#> Note: NA values are suppressed in the print table. They occur here when an
#> indicator was zero across all iterations, so mcse/n_eff/Rhat are undefined;
#> `summary(fit)$pairwise` still contains the NA values.
#>
#> Inclusion probabilities:
#> mean sd mcse n0->0 n0->1 n1->0 n1->1 n_eff Rhat
#> intrusion-dreams 1.000 0.000 0 0 0 3999
#> intrusion-flash 1.000 0.000 0 0 0 3999
#> intrusion-upset 0.925 0.263 0.028 287 12 12 3688 88.677 1.173
#> intrusion-physior 0.966 0.182 0.016 129 8 8 3854 124.701 1.059
#> dreams-flash 1.000 0.000 0 0 0 3999
#> dreams-upset 0.996 0.063 0.004 14 2 2 3981 267.81 1.3
#> ... (use `summary(fit)$indicator` to see full output)
#> Note: NA values are suppressed in the print table. They occur when an indicator
#> was constant (all 0 or all 1) across all iterations, so sd/mcse/n_eff/Rhat
#> are undefined; `summary(fit)$indicator` still contains the NA values.
#>
#> Use `summary(fit)$<component>` to access full results.
#> See the `easybgm` package for other summary and plotting tools.
You can also access posterior means or inclusion probabilities directly:
coef(fit)
#> $main
#> cat (1) cat (2) cat (3) cat (4)
#> intrusion 0.4889848 -1.887789 -4.827802 -9.490176
#> dreams -0.5974490 -3.801634 -7.133124 -11.578501
#> flash -0.1063310 -2.567018 -5.359779 -9.659237
#> upset 0.4144289 -1.303246 -3.365035 -7.015933
#> physior -0.6147997 -3.170385 -6.211313 -10.550982
#>
#> $pairwise
#> intrusion dreams flash upset physior
#> intrusion 0.0000000 0.631924323 0.338297975 0.190695963 0.198176315
#> dreams 0.6319243 0.000000000 0.498040695 0.230776860 0.005254907
#> flash 0.3382980 0.498040695 0.000000000 0.006462176 0.307138582
#> upset 0.1906960 0.230776860 0.006462176 0.000000000 0.707867139
#> physior 0.1981763 0.005254907 0.307138582 0.707867139 0.000000000
#>
#> $indicator
#> intrusion dreams flash upset physior
#> intrusion 0.00000 1.00000 1.00000 0.96575 0.0560
#> dreams 1.00000 0.00000 0.92525 1.00000 0.0655
#> flash 1.00000 0.92525 0.00000 0.99600 1.0000
#> upset 0.96575 1.00000 0.99600 0.00000 1.0000
#> physior 0.05600 0.06550 1.00000 1.00000 0.0000
To visualize the network structure, we threshold the posterior inclusion probabilities at 0.5 and plot the resulting adjacency matrix.
library(qgraph)
median_probability_network = coef(fit)$pairwise
median_probability_network[coef(fit)$indicator < 0.5] = 0.0
qgraph(median_probability_network,
theme = "TeamFortress",
maximum = 1,
fade = FALSE,
color = c("#f0ae0e"), vsize = 10, repulsion = .9,
label.cex = 1, label.scale = "FALSE",
labels = colnames(data))
?bgmCompare
or the Model
Comparison vignette.