
funMoDisco: Functional Motif Discovery

Niccolò Feresini

2024-11-01

Contents

Introduction . 1

Overview of discoverMotifs . 1

Common Parameters . 2

Motif Simulation . 8

Examples . 10

Introduction

The discoverMotifs function serves as the core of the package, offering a robust and efficient
implementation of two advanced algorithms: ProbKMA(Cremona and Chiaromonte, 2020) and
FunBiAlign(Di Iorio, Cremona,and Chiaromonte, 2023). Together, these algorithms provide a
comprehensive solution for the detection and clustering of recurring patterns within functional data.
In addition to motif discovery, funMoDisco allows users to simulate functional curves with
embedded motifs. The package provides several functions for generating synthetic functional
data, which can be useful for testing and benchmarking the motif discovery algorithms. These
simulated curves are customizable, allowing users to control the number, length, and complexity
of the motifs. By the end of this vignette, users will be guide through practical examples and
equipped with a solid understanding of how to effectively utilize funMoDisco package for their
pattern detection needs.

Overview of discoverMotifs

The discoverMotifs function allows users to:

• Choose to run ProbKMA multiple times with varying numbers of motifs (K) and minimum
motif lengths (c), or FunBiAlign specifying the length (portion_len) and the minimum
cardinality (min_card) of the motifs.

• Perform clustering based on local alignments of curve segments.
• Control the clustering process through a wide range of hyperparameters.

1

Common Parameters

The following parameters are shared between both algorithms:

Parameter Description Default
Y0 A list of N vectors (for univariate curves) or N matrices

(for multivariate curves) representing the curves, where
each curve is evaluated on a uniform grid.

mandatory

method A character string specifying which method to use:
either ’ProbKMA’ or ’funBIalign’.

mandatory

stopCriterion A character string indicating the convergence criterion
based on Bhattacharyya distance between memberships
for ’ProbKMA’, or ranking criteria for ’funBIalign’.

mandatory

name A character string providing the name of the resulting
folder.

mandatory

plot A logical value indicating whether to plot the motifs and
results.

mandatory

worker_number An integer specifying the number of CPU cores to use
for parallel computations. Defaults to cores minus one.

‘detectCores() - 1‘

Key Arguments for ProbKMA

Below is an overview of the key arguments for the ProbKMA algorithm in the discoverMotifs
function:

Parameter Description Default
K A vector specifying the numbers of motifs to

be tested.
mandatory

c A vector specifying the minimum motif
lengths to be tested.

mandatory

diss Dissimilarity. Possible choices are ’d0_L2’,
’d1_L2’, ’d0_d1_L2’.

mandatory

alpha Parameter in [0,1] defining the relative weight
of the curve’s levels and derivatives.
’alpha’=0 means ’d0_L2’, ’alpha’=1 means
’d1_L2’.

mandatory

Y1 A list of N vectors or matrices representing
the derivative of the curves. Required if
‘diss=’d0_d1_L2’‘.

‘NULL‘

P0 A matrix specifying the initial membership
probabilities. If not specified, it will be
randomly generated.

‘matrix()‘

S0 A matrix specifying the initial shift. If not
specified, it will be randomly generated.

‘matrix()‘

2

c_max An integer or a vector of K integers
specifying the maximum motif lengths.

‘Inf‘

w Weight vector for the dissimilarity index
across dimensions.

‘1‘

m Weighting exponent in the least-squares
functional method (must be greater than 1).

‘2‘

iter_max Maximum number of iterations allowed for
the ProbKMA algorithm.

‘1e3‘

quantile Double specifying quantile probability when
’stopCriterion’="quantile".

‘0.25‘

tol Double specifying the tolerance level for the
method; iteration stops if the stop criterion is
less than ’tol’.

‘1e-8‘

iter4elong Integer specifying the number of iterations
after which motif elongation is performed. If
’iter4elong’ > ’iter_max’, no elongation is
performed.

‘100‘

tol4elong Tolerance on the Bhattacharyya distance for
motif elongation.

‘1e-3‘

max_elong Maximum elongation allowed in a single
iteration, as a percentage of motif length.

‘0.5‘

trials_elong Integer specifying the number of elongation
trials (equispaced) on each side of the motif
in a single iteration.

‘201‘

deltaJK_elong Maximum relative increase in the objective
function allowed during motif elongation.

‘0.05‘

max_gap Double specifying the maximum gap allowed
in each alignment as a percentage of the
motif length.

‘0.2‘

iter4clean Integer specifying number of iterations after
which motif cleaning is performed. If
’iter4clean’ > ’iter_max’, no cleaning is
performed.

‘50‘

tol4clean Tolerance on the Bhattacharyya distance for
motif cleaning.

‘1e-4‘

quantile4clean Dissimilarity quantile used for motif cleaning. ‘0.5‘
return_options If ’TRUE’, the options passed to the method

are returned.
‘TRUE‘

n_subcurves Integer specifying the number of splitting
subcurves used when the number of curves is
equal to one.

‘10‘

sil_threshold Double specifying the threshold value to filter
candidate motifs.

‘0.9‘

set_seed If ’TRUE’, sets a random seed to ensure
reproducibility.

‘FALSE‘

3

seed The random seed for initialization (used if
set_seed=TRUE).

‘1‘

exe_print If ’TRUE’ and worker_number is equal to
one, prints execution details for each
iteration.

‘FALSE‘

transformed A logical value indicating whether to
normalize the curve segments to the interval
[0,1] before applying the dissimilarity
measure.

‘NULL‘

V_init A list of motif sets provided as specific
initializations for clustering rather than using
random initializations.

‘NULL‘

n_init_motif The number of initial motif sets from
‘V_init‘ to be used directly as starting points
in clustering.

‘NULL‘

Example Usage

Here is an example showing a possible use of discoverMotifs with ProbKMA :

library(funMoDisco)

diss <- 'd0_d1_L2'
alpha <- 0.5
run probKMA multiple times (2x3x10=60 times)
K <- c(2,3)
c <- c(61,51)
n_init = 10

data("simulated200") # load simulated data

results = funMoDisco::discoverMotifs(
Y0 = simulated200$Y0,
method = "ProbKMA",
stopCriterion = "max",
name = './results_ProbKMA_VectorData/',
plot = TRUE,
probKMA_options = list(

Y1 = simulated200$Y1,
K = K,
c = c,
n_init = n_init,
diss = diss,
alpha = alpha

),

4

worker_number = NULL
)

In this scenario, all plots generated during the algorithm’s execution will be saved in the folder
specified by the ‘name’ parameter. Additionally, the function handles the entire post-processing
phase, including filtering patterns and searching for occurrences within the curves, presenting both
intermediate and final results along with their corresponding plots. If the user chooses to only
perform the post-processing by adjusting parameters like ‘sil_threshold,’ it is sufficient to call
the same discoverMotifs function with the updated parameters. The algorithm will automatically
load the previously computed results (which are computationally expensive) and proceed with the
post-processing, returning updated plots and results.
Below is an example of how to call discoverMotifs with a customized V_init and transformed
= TRUE:

library(funMoDisco)

Define parameters
c <- 5
K <- 2
n_init <- 2
diss <- 'd0_d1_L2'
alpha <- 0.5

Load sample data
data("simulated200")

motif1 <- list(v0 = matrix(runif(c * 4), nrow = c, ncol = 1))
motif2 <- list(v0 = matrix(runif(c * 4), nrow = c, ncol = 1))

Optional: Include `v1` if using a dissimilarity measure that requires it
motif1$v1 <- matrix(runif(c * 4), nrow = c, ncol = 1)
motif2$v1 <- matrix(runif(c * 4), nrow = c, ncol = 1)

Define V_init with multiple initial motif sets, matching `K` motifs
per initialization
V_init <- list(

list(motif1, motif2), # Initialization 1 with 2 motifs
list(motif1, motif2) # Initialization 2 with 2 motifs

)

Run discoverMotifs
results <- funMoDisco::discoverMotifs(

Y0 = simulated200$Y0,
method = "ProbKMA",
stopCriterion = "max",
name = './results_ProbKMA_VectorData/',
plot = TRUE,

5

probKMA_options = list(
Y1 = simulated200$Y1, K = K, c = c, n_init = n_init,
diss = diss, alpha = alpha, sil_threshold = 0.5,
V_init = V_init,
transformed = TRUE

),
worker_number = NULL

)

Key Arguments for funBIalign

Below is an overview of the key arguments for the ProbKMA algorithm in the discoverMotifs
function:

Parameter Description Default
K A vector specifying the numbers of

motifs to be tested.
mandatory

c A vector specifying the minimum motif
lengths to be tested.

mandatory

diss Dissimilarity. Possible choices are
’d0_L2’, ’d1_L2’, ’d0_d1_L2’.

mandatory

alpha Parameter in [0,1] defining the relative
weight of the curve’s levels and
derivatives. ’alpha’=0 means ’d0_L2’,
’alpha’=1 means ’d1_L2’.

mandatory

Y1 A list of N vectors or matrices
representing the derivative of the curves.
Required if ‘diss=’d0_d1_L2’‘.

‘NULL‘

P0 A matrix specifying the initial
membership probabilities. If not
specified, it will be randomly generated.

‘matrix()‘

S0 A matrix specifying the initial shift. If
not specified, it will be randomly
generated.

‘matrix()‘

c_max An integer or a vector of K integers
specifying the maximum motif lengths.

‘Inf‘

w Weight vector for the dissimilarity index
across dimensions.

‘1‘

m Weighting exponent in the least-squares
functional method (must be greater than
1).

‘2‘

iter_max Maximum number of iterations allowed
for the ProbKMA algorithm.

‘1e3‘

6

quantile Double specifying quantile probability
when ’stopCriterion’="quantile".

‘0.25‘

tol Double specifying the tolerance level for
the method; iteration stops if the stop
criterion is less than ’tol’.

‘1e-8‘

iter4elong Integer specifying the number of
iterations after which motif elongation is
performed. If ’iter4elong’ > ’iter_max’,
no elongation is performed.

‘100‘

tol4elong Tolerance on the Bhattacharyya distance
for motif elongation.

‘1e-3‘

max_elong Maximum elongation allowed in a single
iteration, as a percentage of motif length.

‘0.5‘

trials_elong Integer specifying the number of
elongation trials (equispaced) on each
side of the motif in a single iteration.

‘201‘

deltaJK_elong Maximum relative increase in the
objective function allowed during motif
elongation.

‘0.05‘

max_gap Double specifying the maximum gap
allowed in each alignment as a
percentage of the motif length.

‘0.2‘

iter4clean Integer specifying number of iterations
after which motif cleaning is performed.
If ’iter4clean’ > ’iter_max’, no cleaning
is performed.

‘50‘

tol4clean Tolerance on the Bhattacharyya distance
for motif cleaning.

‘1e-4‘

quantile4clean Dissimilarity quantile used for motif
cleaning.

‘0.5‘

return_options If ’TRUE’, the options passed to the
method are returned.

‘TRUE‘

n_subcurves Integer specifying the number of
splitting subcurves used when the
number of curves is equal to one.

‘10‘

sil_threshold Double specifying the threshold value to
filter candidate motifs.

‘0.9‘

set_seed If ’TRUE’, sets a random seed to ensure
reproducibility.

‘FALSE‘

seed The random seed for initialization (used
if set_seed=TRUE).

‘1‘

exe_print If ’TRUE’ and worker_number is equal
to one, prints execution details for each
iteration.

‘FALSE‘

7

transformed A logical value indicating whether to
normalize the curve segments to the
interval [0,1] before applying the
dissimilarity measure.

‘NULL‘

V_init A list of motif sets provided as specific
initializations for clustering rather than
using random initializations.

‘NULL‘

n_init_motif The number of initial motif sets from
‘V_init‘ to be used directly as starting
points in clustering.

‘NULL‘

Example Usage

Here is an example showing a possible use of discoverMotifs with funBIalign :

library(funMoDisco)

data("simulated200") # load simulated data

funBialignResult <- funMoDisco::discoverMotifs(
Y0 = simulated200$Y0,
method = "FunBIalign",
stopCriterion = 'fMRS',
name = './results_FunBialign',
plot = TRUE,
funBIalign_options = list(

portion_len = 60,
min_card = 3,
cut_off = 1.0

)
)

As previously discussed for ‘ProbKMA’, if the user intends to execute only the post-processing phase
related to the re-ranking of discovered motifs, they can simply call the same function, specifying
the updated re-ranking criterion and, if necessary, adjusting the new cut_off value.

Motif Simulation

As previously noted, the package offers the capability to generate synthetic curves embedded with
patterns. This functionality facilitates the testing of both algorithms and provides a reliable refer-
ence benchmark for performance evaluation.
The algorithm begins by generating random curves utilizing B-splines as the foundational tools.
Subsequently, it incorporates either random or positional patterns into these curves. Finally, noise
is introduced, which can manifest as either pointwise noise or noise applied to the expansion co-
efficients of the B-splines. This process effectively simulates real-world scenarios in which each
measurement is associated with a degree of noise.

8

Key Arguments for motifSimulationBuilder

‘motifSimulationBuilder’ represents the first function to be called. In particular, it represents the
constructor of the S4 class ‘motifSimulation’.

Below is an overview of the key arguments:

Parameter Description Default
N The number of background curves to be

generated.
mandatory

len The length of the background curves. mandatory
mot_details A list outlining the definitions of the motifs

to be included. Each motif is characterized
by its length, a set of coefficients that may be
optionally specified, and the number of
occurrences. These occurrences can be
indicated either by specific positions within
the curves or by a total count. In the latter
case, the algorithm will randomly position
the motifs throughout the curves.

mandatory

norder Integer specifying the order of the B-splines. 3
coeff_min Additive coefficients to be incorporated into

the generation of coefficients for the
background curves.

‘-15‘

coeff_max Additive coefficients to be incorporated into
the generation of coefficients for the
background curves.

‘15‘

dist_knots Integer specifying the distance between two
consecutive knots.

‘10‘

min_dist_motifs Integer specifying the minimum distance
between two consecutive motifs embedded in
the same curve.

‘’norder’ *
’dist_knots’‘

distribution Distribution from which the coefficients of
the background curves are generated. You
can choose between a uniform distribution or
a beta distribution. Alternatively, you can
pass a vector representing the empirical
distribution from which you wish to sample.

‘unif‘

Key Arguments for generateCurves

After calling the constructor of the class, it is then possible to generate the curves with the motifs
embedded.

Below is an overview of the key arguments:

9

Parameter Description Default
object The S4 object first constructed. mandatory
noise_type A string specifying whether to add pointwise

error or coefficients (’pointwise’ and ’coeff’).
mandatory

noise_str A list corresponding to the number of motifs,
specifying the structure of noise to be added
for each motif. If ’pointwise’ is chosen, the
user can specify a list of vectors or matrices
indicating the amount of noise for each motif.
If ’coeff’ is selected, a list of individual values
or vectors can be provided.

mandatory

seed_background An integer specifying the seed for background
curve generation.

‘777‘

seed_motif An integer specifying the seed for motif
generation.

‘43213‘

only_der If ’FALSE’, a vertical shift is added to each
motif instance.

‘TRUE‘

coeff_min_shift Minimum vertical shift. ‘-10‘
coeff_max_shift Maximum vertical shift. ‘10‘

Key Arguments for plot_motifs

This is the final function to be called. As indicated by its name, it generates summary plots. Each
plot displays the background curve, the motif without noise, and the motif with noise highlighted
within a shaded region.

Below is an overview of the key arguments:

Parameter Description Default
object The S4 object first constructed. mandatory
curves The result of the previous method. mandatory
path Path specifying the directory where the

results will be saved.
mandatory

Examples

The five main types of use are considered below.

0) Special case: No motifs

library(funMoDisco)

10

mot_len <- 100
mot_details <- NULL # or list()

builder <- funMoDisco::motifSimulationBuilder(N = 20,len = 300,mot_details)

curves <- funMoDisco::generateCurves(builder)

funMoDisco::plot_motifs(builder,curves,name = "plots_0")
#> pdf
#> 2

−10

−5

0

5

10

0 100 200 300
t

x

Random curve 1

1) Set the motif position and add pointwise noise

library(funMoDisco)

mot_len <- 100

Struct specifying the motif ID, the number of curves, and the relative knot position
motif_str <- rbind.data.frame(

11

c(1, 1, 20),
c(2, 1, 2),
c(1, 3, 1),
c(1, 2, 1),
c(1, 2, 15),
c(1, 4, 1),
c(2, 5, 1),
c(2, 7, 1),
c(2, 17, 1)

)

names(motif_str) <- c("motif_id", "curve", "start_break_pos")

mot1 <- list(
"len" = mot_len, # Length
"coeffs" = NULL, # Weights for the motif
"occurrences" = motif_str %>% filter(motif_id == 1)

)

mot2 <- list(
"len" = mot_len,
"coeffs" = NULL,
"occurrences" = motif_str %>% filter(motif_id == 2)

)

mot_details <- list(mot1, mot2)

MATRIX NOISE
noise_str <- list(

rbind(
rep(2, 100), # Constant and identical
c(rep(0.1, 50), rep(2, 50)), # SD 0.1 first, SD 1 later
c(rep(2, 50), rep(0.1, 50)), # SD 1 first, 0.1 later
c(seq(2, 0.1, len = 50), rep(0.1, 50))

),
rbind(

rep(0.0, 100),
rep(0.5, 100),
rep(1.0, 100),
rep(5.0, 100)

)
)

builder <- funMoDisco::motifSimulationBuilder(
N = 20,
len = 300,
mot_details,

12

distribution = 'beta'
)

curves <- funMoDisco::generateCurves(
builder,
noise_type = 'pointwise',
noise_str = noise_str

)
#> [1] " --- Adding motifs to curve 1"
#> [1] " --- Adding motifs to curve 3"
#> [1] " --- Adding motifs to curve 2"
#> [1] " --- Adding motifs to curve 4"
#> [1] " --- Adding motifs to curve 5"
#> [1] " --- Adding motifs to curve 7"
#> [1] " --- Adding motifs to curve 17"

funMoDisco::plot_motifs(builder, curves, "plots_1")
#> pdf
#> 2

SNR: 6.869SNR: 25.57

−10

0

10

0 100 200 300
t

x

motif_id: 1
motif_id: 2
background_curve
zero_noise_motif

Random curve 1 − type_error 1

13

2) Set the motif position and add coeff noise

library(funMoDisco)

mot_len <- 100

Struct specifying the motif ID, the number of curves, and the relative knot position
motif_str <- rbind.data.frame(

c(1, 1, 20),
c(1, 1, 2),
c(1, 3, 1),
c(1, 2, 1),
c(1, 2, 15),
c(1, 4, 1),
c(1, 5, 1),
c(1, 7, 1),
c(2, 17, 1)

)

names(motif_str) <- c("motif_id", "curve", "start_break_pos")

mot1 <- list(
"len" = mot_len, # Length
"coeffs" = NULL, # Weights for the motif
"occurrences" = motif_str %>% filter(motif_id == 1)

)

mot2 <- list(
"len" = mot_len,
"coeffs" = NULL,
"occurrences" = motif_str %>% filter(motif_id == 2)

)

mot_details <- list(mot1, mot2)

VECTOR NOISE
noise_str <- list(

c(0.1, 1.0, 5.0),
c(0.0, 0.0, 0.0)

)

builder <- funMoDisco::motifSimulationBuilder(
N = 20,
len = 300,
mot_details,
distribution = 'beta'

)

14

curves <- funMoDisco::generateCurves(
builder,
noise_type = 'coeff',
noise_str,
only_der = FALSE

)
#> [1] " --- Adding motif 1 to curve 1 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 1 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 1 with noise 1"
#> [1] " --- Adding motif 1 to curve 1 with noise 1"
#> [1] " --- Adding motif 1 to curve 1 with noise 5"
#> [1] " --- Adding motif 1 to curve 1 with noise 5"
#> [1] " --- Adding motif 1 to curve 2 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 2 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 2 with noise 1"
#> [1] " --- Adding motif 1 to curve 2 with noise 1"
#> [1] " --- Adding motif 1 to curve 2 with noise 5"
#> [1] " --- Adding motif 1 to curve 2 with noise 5"
#> [1] " --- Adding motif 1 to curve 3 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 3 with noise 1"
#> [1] " --- Adding motif 1 to curve 3 with noise 5"
#> [1] " --- Adding motif 1 to curve 4 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 4 with noise 1"
#> [1] " --- Adding motif 1 to curve 4 with noise 5"
#> [1] " --- Adding motif 1 to curve 5 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 5 with noise 1"
#> [1] " --- Adding motif 1 to curve 5 with noise 5"
#> [1] " --- Adding motif 1 to curve 7 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 7 with noise 1"
#> [1] " --- Adding motif 1 to curve 7 with noise 5"
#> [1] " --- Adding motif 2 to curve 17 with noise 0"
#> [1] " --- Adding motif 2 to curve 17 with noise 0"
#> [1] " --- Adding motif 2 to curve 17 with noise 0"

funMoDisco::plot_motifs(builder, curves, "plots_2")
#> pdf
#> 2

15

SNR: 42.19SNR: 39.352

−20

−10

0

10

0 100 200 300
t

x

motif_id: 1
background_curve
zero_noise_motif

Random curve 1 − type_error 1

3) Random motif position and add pointwse noise

library(funMoDisco)

mot_len <- 100

Define motifs
mot1 <- list(

"len" = mot_len, # Length
"coeffs" = NULL, # Weights for the motif
"occurrences" = 5

)

mot2 <- list(
"len" = mot_len,
"coeffs" = NULL,
"occurrences" = 6

)

16

mot_details <- list(mot1, mot2)

Define noise structure
noise_str <- list(

rbind(rep(2, 100)),
rbind(rep(0.5, 100))

)

Build motif simulation
builder <- funMoDisco::motifSimulationBuilder(

N = 20,
len = 300,
mot_details,
distribution = 'beta'

)

Generate curves
curves <- funMoDisco::generateCurves(

builder,
noise_type = 'pointwise',
noise_str,
only_der = FALSE

)
#> [1] " --- Adding motifs to curve 8"
#> [1] " --- Adding motifs to curve 9"
#> [1] " --- Adding motifs to curve 16"
#> [1] " --- Adding motifs to curve 17"
#> [1] " --- Adding motifs to curve 1"
#> [1] " --- Adding motifs to curve 4"
#> [1] " --- Adding motifs to curve 6"
#> [1] " --- Adding motifs to curve 18"

Plot motifs
funMoDisco::plot_motifs(builder, curves, "plots_3")
#> pdf
#> 2

17

SNR: 14.266

−10

0

10

0 100 200 300
t

x

motif_id: 2
background_curve
zero_noise_motif

Random curve 1 − type_error 1

4) Random motif position and add coeff noise

library(funMoDisco)

mot_len <- 100

Define motifs
mot1 <- list(

"len" = mot_len, # Length
"weights" = NULL, # Weights for the motif
"occurrences" = 5

)

mot2 <- list(
"len" = mot_len,
"coeffs" = NULL,
"occurrences" = 6

)

18

mot_details <- list(mot1, mot2)

Define vector noise
noise_str <- list(

c(0.1, 5.0, 10.0),
c(0.1, 5.0, 10.0)

)

Build motif simulation
builder <- funMoDisco::motifSimulationBuilder(

N = 20,
len = 300,
mot_details,
distribution = 'beta'

)

Generate curves
curves <- funMoDisco::generateCurves(

builder,
noise_type = 'coeff',
noise_str,
only_der = FALSE

)
#> [1] " --- Adding motif 1 to curve 3 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 3 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 3 with noise 5"
#> [1] " --- Adding motif 1 to curve 3 with noise 5"
#> [1] " --- Adding motif 1 to curve 3 with noise 10"
#> [1] " --- Adding motif 1 to curve 3 with noise 10"
#> [1] " --- Adding motif 2 to curve 4 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 4 with noise 5"
#> [1] " --- Adding motif 2 to curve 4 with noise 10"
#> [1] " --- Adding motif 2 to curve 8 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 8 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 8 with noise 5"
#> [1] " --- Adding motif 2 to curve 8 with noise 5"
#> [1] " --- Adding motif 2 to curve 8 with noise 10"
#> [1] " --- Adding motif 2 to curve 8 with noise 10"
#> [1] " --- Adding motif 1 to curve 9 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 9 with noise 5"
#> [1] " --- Adding motif 1 to curve 9 with noise 10"
#> [1] " --- Adding motif 2 to curve 10 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 10 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 10 with noise 5"
#> [1] " --- Adding motif 2 to curve 10 with noise 5"
#> [1] " --- Adding motif 2 to curve 10 with noise 10"
#> [1] " --- Adding motif 2 to curve 10 with noise 10"

19

#> [1] " --- Adding motif 1 to curve 16 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 16 with noise 0.1"
#> [1] " --- Adding motif 1 to curve 16 with noise 5"
#> [1] " --- Adding motif 1 to curve 16 with noise 5"
#> [1] " --- Adding motif 1 to curve 16 with noise 10"
#> [1] " --- Adding motif 1 to curve 16 with noise 10"
#> [1] " --- Adding motif 2 to curve 20 with noise 0.1"
#> [1] " --- Adding motif 2 to curve 20 with noise 5"
#> [1] " --- Adding motif 2 to curve 20 with noise 10"

Plot motifs
funMoDisco::plot_motifs(builder, curves, "plots_4")
#> pdf
#> 2

SNR: 45.168 SNR: 42.334

−20

−10

0

10

0 100 200 300
t

x

motif_id: 1
background_curve
zero_noise_motif

Random curve 3 − type_error 1

Additional functions

In addition to the functions previously described, the package includes a helper function that
facilitates the direct transformation of the output from ‘generateCurves’ into a format suitable for

20

‘discoverMotifs’. This function generates a comprehensive list that encompasses all curves, each
containing the embedded patterns corresponding to various tested noise levels.

result <- funMoDisco::to_motifDiscovery(curves)

Additionally, a Shiny app is available, serving as a graphical user interface (GUI) that enables users
to execute all the previously mentioned functions in a straightforward and intuitive manner. The
app consistently provides summary plots, enhancing the user experience.

library(funMoDisco)

Define motif structure
motif_str <- rbind.data.frame(

c(1, 1, 20),
c(1, 1, 2),
c(1, 3, 1),
c(1, 2, 1),
c(1, 2, 15),
c(1, 4, 1),
c(1, 5, 1),
c(1, 7, 1),
c(2, 17, 1)

)

names(motif_str) <- c("motif_id", "curve", "start_break_pos")

Define motifs
mot1 <- list(

"len" = 100, # Length
"weights" = NULL, # Weights for the motif
"appearance" = motif_str %>% filter(motif_id == 1)

)

mot2 <- list(
"len" = 150,
"weights" = NULL,
"appearance" = motif_str %>% filter(motif_id == 2)

)

mot_details <- list(mot1, mot2)

Define noise structure
noise_str <- list(

rbind(rep(2, 100), c(rep(0.1, 50), rep(2, 50))),
rbind(rep(0.0, 150), rep(5.0, 150))

)

21

Run motif simulation app
funMoDisco::motifSimulationApp(noise_str, mot_details)

Conclusion

The discoverMotifs function is a powerful tool for discovering functional motifs in complex
datasets. With its flexibility, users can run multiple initializations, customize clustering parame-
ters, simulate functional curves with motifs, and visualize the results in an intuitive way. Whether
using ProbKMA or funBIalign, the funMoDisco package provides a robust solution for analyzing
functional data and uncovering hidden patterns.

22

	Introduction
	Overview of discoverMotifs
	Common Parameters
	Motif Simulation
	Examples

