Package ‘photon’

February 24, 2025
Type Package

Title High-Performance Geocoding using ‘photon’
Version 0.3.5

Description Features unstructured, structured and reverse geocoding using the
'‘photon’ geocoding API <https://photon.komoot.io/>.
Facilitates the setup of local ‘photon’ instances to enable offline
geocoding.

License Apache License (>=2)
URL https://github.com/jslth/photon/, https://jslth.github.io/photon/

BugReports https://github.com/jslth/photon/issues
Encoding UTF-8

RoxygenNote 7.3.2

Imports utils, cli, countrycode, httr2, R6, sf, processx

Suggests testthat (>= 3.0.0), tibble, knitr, rmarkdown, webfakes, ps
Config/testthat/edition 3

VignetteBuilder knitr

NeedsCompilation no

Author Jonas Lieth [aut, cre, cph] (<https://orcid.org/0000-0002-3451-3176>)
Maintainer Jonas Lieth <jonas.lieth@gesis.org>

Repository CRAN

Date/Publication 2025-02-24 13:00:02 UTC

Contents

emd_OpLionS e e
download_photon L
download_searchindex e
ge0Code e e e
GELUINSTANCE o e e e e

https://photon.komoot.io/
https://github.com/jslth/photon/
https://jslth.github.io/photon/
https://github.com/jslth/photon/issues
https://orcid.org/0000-0002-3451-3176

2 cmd_options

has_java e 9
latinize e e e e 9
new_photon e e e 10
photon_local 12
PULZE_JAVA . . . v v v v i i e e e e e e e e e e e e e 18
TEVEISE . & v v v o e v e e e e e e e e e e e e 19
structured L L L e e 21

Index 25

cmd_options Format command line options
Description

Helper function to format options for command line calls. The function accepts key-value pairs
where the parameter name is the name of the option and the parameter value is the value of the
option. Arguments are formatted according to the following rules:

* If a value is TRUE, add parameter name as flag.
* If a value is FALSE, do not add parameter name as flag.
 If a value has length(x) > 1, collapse it as a CSV.

* If a parameter name is missing, take the value as the flag name.

* If a parameter name is given, replace underscores with hyphens.

Usage

cmd_options(..., use_double_hyphens = FALSE)

Arguments

Key-value pairs of command line options.

use_double_hyphens
If TRUE, uses double hyphens to designate non-abbreviated command line op-
tions and single-hyphens to designate abbreviated ones. If FALSE, always uses
single hyphens. Defaults to FALSE as both Java and photon use single hyphens.

Value

A character vector of formatted command line options that can be used as input to system2 or run.

download_photon 3

Examples

converts R parameters to CMD options
parameters for the ping command
cmd_options(n =1, w =5, "127.0.0.1")

sometimes, it is necessary to use double hyphens
options for the docker ps command
cmd_options("ps"”, all = TRUE, format = "json"”, use_double_hyphens = TRUE)

particularly useful together with photon

the following options can be used for the “photon_opts™ argument
of photon$start()

cmd_options(cors_any = TRUE, data_dir = "path/to/dir")

download_photon Download photon

Description

Download the photon executable from GitHub.

Usage

download_photon(
path = ".",
version = NULL,
opensearch = FALSE,
only_url = FALSE,

quiet = FALSE

)
Arguments
path Path to a directory to store the executable.
version Version tag of the photon release. If NULL, downloads the latest known ver-
sion. A list of all releases can be found here: https://github.com/komoot/
photon/releases/. Ignored if jar is given. If NULL, uses the latest known
version (Currently: 0.6.2).
opensearch If TRUE, downloads the OpenSearch version of photon if available. OpenSearch
versions are available for photon >=0.6.0.
only_url If TRUE, performs a download. Otherwise, only returns a link to the file.
quiet If TRUE, suppresses all informative messages.
Value

If only_url = FALSE, returns a character string giving the path to the downloaded file. Otherwise,
returns the URL to be downloaded.

https://github.com/komoot/photon/releases/
https://github.com/komoot/photon/releases/

Examples

download_searchindex

download_photon(tempdir(), version = "0.4.1")

download_searchindex Download search index

Description

Finds and downloads the Elasticsearch index database necessary to set up Photon locally.

Usage
download_searchindex(
path = ".",
country = "Monaco”,

date = "latest”,

exact = FALSE

’

section = NULL,
only_url = FALSE,

quiet = FALSE

Arguments

path

country

date

exact

section

only_url

quiet

Path to a directory where the identified file should be stored.

Character string that can be identified by countryname as a country. An extract
for this country will be downloaded. If "planet”, downloads a global search
index.

Character string or date-time object used to specify the creation date of the
search index. If "latest”, will download the file tagged with "latest". If a char-
acter string, the value should be parseable by as.POSIXct. If exact = FALSE,
the input value is compared to all available dates and the closest date will be
selected. Otherwise, a file will be selected that exactly matches the input to
date.

If TRUE, exactly matches the date. Otherwise, selects the date with lowest dif-
ference to the date parameter.

Subdirectory of the download server from which to select a search index. If
"experimental”, selects a dump made for the master version of photon. If
"archived”, selects a dump made for an older version of photon. If NULL (or
any arbitrary string), selects a dump made for the current release. Defaults to
NULL.

If TRUE, performs a download. Otherwise, only returns a link to the file.

If TRUE, suppresses all informative messages.

geocode 5

Value

If only_url = FALSE, returns the local path to the downloaded file. Otherwise, returns the URL to
the remote file.

Note

Depending on the country, search index databases tend to be very large. The global search index is
about 75 GB of size (10/2024). Keep that in mind when running this function.

Examples

download the latest extract of Monaco
download_searchindex(path = tempdir())

download the latest extract of American Samoa
download_searchindex(path = tempdir(), country = "Samoa")

download an extract from a month ago
download_searchindex(
path = tempdir(),
country = "Monaco"”,
date = Sys.time() - 2629800
)

if possible, download an extract from today
try(download_searchindex(
path = tempdir(),

country = "Monaco”,
date = Sys.Date(),
exact = TRUE

)

get the latest global coverage

NOTE: the file to be downloaded is several tens of gigabytes of size!
Not run:

download_searchindex(path = tempdir(), country = "planet")

End(Not run)

geocode Unstructured geocoding

Description

Geocode arbitrary text strings. Unstructured geocoding is more flexible but generally less accurate
than structured geocoding.

Usage
geocode (
texts,
limit = 1,
lang = "en”,
bbox = NULL,

geocode

osm_tag = NULL,

layer = NULL,

locbias = NULL,

locbias_scale
zoom = NULL,

= NULL,

latinize = TRUE,
progress = interactive()

Arguments

texts

limit

lang
bbox
osm_tag

layer

locbias

locbias_scale

zoom

latinize

progress

Character vector of a texts to geocode.

Number of results to return. A maximum of 50 results can be returned for a
single search term. Defaults to 1. When more than a single text is provided but
limit is greater than 1, the results can be uniquely linked to the input texts using
the idx column in the output.

Language of the results. If "default"”, returns the results in local language.
Any object that can be parsed by st_bbox. Results must lie within this bbox.
Character string giving an OSM tag to filter the results by. See details.

Character string giving a layer to filter the results by. Can be one of "house”,
"street”, "locality”, "district”, "city”, "county”, "state", "country”,

or "other"”.

Numeric vector of length 2 or any object that can be coerced to a length-2 nu-
meric vector (e.g. a list or sfg object). Specifies a location bias for geocoding in
the format c(lon, lat). Geocoding results are biased towards this point. The
radius of the bias is controlled through zoom and the weight of place prominence
through location_bias_scale.

Numeric vector specifying the importance of prominence in locbias. A higher
prominence scale gives more weight to important places. Possible values range
from O to 1. Defaults to 0.2.

Numeric specifying the radius for which the locbias is effective. Corresponds
to the zoom level in OpenStreetMap. The exact relation to locbias is 0.25 km -
2(18=z0om) ‘Defaults to 16.

If TRUE sanitizes search terms in texts by converting their encoding to "latin1”
using latinize. This can be helpful if the search terms contain certain symbols
(e.g. fancy quotes) that photon cannot handle properly. Defaults to TRUE as
latinize is very conservative and should usually not cause any problems.

If TRUE, shows a progress bar for longer queries.

https://wiki.openstreetmap.org/wiki/Tags

geocode

Details

Filtering by OpenStreetMap tags follows a distinct syntax explained on https://github.com/
komoot/photon. In particular:

Value

Include places with tag: key:value
Exclude places with tag: !'key:value
Include places with tag key: key
Include places with tag value: :value
Exclude places with tag key: !key

Exclude places with tag value: : !value

An sf dataframe or tibble containing the following columns:

idx: Internal ID specifying the index of the texts parameter.
osm_type: Type of OSM element, one of N (node), W (way), R (relation), or P (polygon).
osm_id: OpenStreetMap ID of the matched element.
country: Country of the matched place.

city: City of the matched place.

osm_key: OpenStreetMap key.

countrycode: ISO2 country code.

housenumber: House number, if applicable.

postcode: Post code, if applicable.

locality: Locality, if applicable.

street: Street, if applicable.

district: District name, if applicable.

osm_value: OpenStreetMap tag value.

name: Place name.

type: Layer type as described for the layer parameter.

extent: Boundary box of the match.

Examples

an instance must be mounted first
photon <- new_photon()

geocode a city
geocode("Berlin")

return more results
geocode("Berlin”, limit = 10)

https://github.com/komoot/photon
https://github.com/komoot/photon

get_instance

return the results in german
geocode("Berlin”, limit = 10, lang = "de")

limit to cities
geocode("Berlin”, layer = "city")

limit to European cities
geocode("Berlin”, bbox = c(xmin = -71.18, ymin = 44.46, xmax = 13.39, ymax = 52.52))

search for museums in berlin
geocode("Berlin”, osm_tag = "tourism:museum"”)

search for touristic attractions in berlin
geocode("Berlin”, osm_tag = "tourism")

search for anything but tourism
geocode("Berlin", osm_tag = "!tourism")

use location biases to match Berlin, IL instead of Berlin, DE
geocode("Berlin”, locbias = c(-100, 40), locbias_scale = 0.1, zoom = 7, osm_tag = "place"”)

latinization can help normalize search terms
geocode("Luatuanu\u2019u”, latinize = FALSE) # fails
geocode("Luatuanu\u2019u”, latinize = TRUE) # works

get_instance Photon utilities

Description

Utilities to manage photon instances. These functions operate on mounted photon instances which
can be initialized using new_photon.

» get_instance() retrieves the active photon instance.

* get_photon_url() retrieves the photon URL to send requests.

Usage

get_instance()

get_photon_url()

Value

get_instance returns a R6 object of class photon. get_photon_url() returns a URL string.

has_java 9

Examples

make a new photon instance
new_photon()

retrieve it from the cache
get_instance()

get the server url
get_photon_url()

has_java Is Java installed?

Description

Utility function to check if Java is installed and if it has the right version.

Usage

has_java(version = NULL)

Arguments
version Character string specifying the minimum version of Java. If the installed Java
version is lower than this, returns FALSE. If NULL, only checks if any kind of Java
is installed on the system.
Value

A logical vector of length 1.

Examples

has_java() # Is Java installed?
has_java("11") # Is Java > 11 installed?

latinize Latinization

Description

Helper tool to transliterate various encodings to latin. Attempts to convert a character vector from
its current encoding to "latinl1"” and - if it fails - defaults back to the original term. This can be
useful for geocode and structured when attempting to geocode terms containing symbols that
photon does not support.

10 new_photon

Usage
latinize(x, encoding = "latinl")
Arguments
X A character vector.
encoding Encoding that the strings in x should be converted to. If the conversion fails,
defaults back to the original encoding. Defaults to "latin1".
Value

The transliterated vector of the same length as x. NAs are avoided.

Examples

converts fancy apostrophes to normal ones
latinize("Luatuanu\u2019u”)

does nothing
latinize("Berlin")

also does nothing, although it would fail with “iconv"”
latinize("\u@391\u@3b8\ud3ae\ud3bd\ud3b1")

new_photon Initialize a photon instance

Description

Initialize a photon instance by creating a new photon object. This object is stored in the R session
and can be used to perform geocoding requests.
Instances can either be local or remote. Remote instances require nothing more than a URL that
geocoding requests are sent to. Local instances require the setup of the photon executable, a search
index, and Java. See photon_local for details.

Usage
new_photon(
path = NULL,
url = NULL,

photon_version = NULL,
country = NULL,

date = "latest”,

exact = FALSE,

section = NULL,
opensearch = FALSE,
overwrite = FALSE,
quiet = FALSE

new_photon 11

Arguments
path Path to a directory where the photon executable and data should be stored. De-
faults to a directory "photon" in the current working directory. If NULL, a remote
instance is set up based on the url parameter.
url URL of a photon server to connect to. If NULL and path is also NULL, connects

to the public API under https://photon.komoot.io/.

photon_version Version of photon to be used. A list of all releases can be found here: https:
//github.com/komoot/photon/releases/. Ignored if jar is given. If NULL,
uses the latest known version.

country Character string that can be identified by countryname as a country. An extract
for this country will be downloaded. If NULL, downloads a global search index.

date Character string or date-time object used to specify the creation date of the
search index. If "latest”, will download the file tagged with "latest". If a char-
acter string, the value should be parseable by as.POSIXct. If exact = FALSE,
the input value is compared to all available dates and the closest date will be
selected. Otherwise, a file will be selected that exactly matches the input to
date.

exact If TRUE, exactly matches the date. Otherwise, selects the date with lowest dif-
ference to the date parameter.

section Subdirectory of the download server from which to select a search index. If
"experimental”, selects a dump made for the master version of photon. If
"archived"”, selects a dump made for an older version of photon. If NULL (or
any arbitrary string), selects a dump made for the current release. Defaults to
NULL.

opensearch If TRUE, looks for an OpenSearch version of photon in the specified path. Opensearch-
based photon supports structured geocoding queries but is currently only exper-
imental. Defaults to FALSE. See vignette("nominatim-import”, package =
"photon") for details.

overwrite If TRUE, overwrites existing jar files and search indices when initializing a new
instance. Defaults to FALSE.
quiet If TRUE, suppresses all informative messages.
Value

An R6 object of class photon.

Examples

connect to public API
photon <- new_photon()

connect to arbitrary server
photon <- new_photon(url = "photonserver.org")

if (has_java("11")) {
set up a local instance in the current working directory

https://photon.komoot.io/
https://github.com/komoot/photon/releases/
https://github.com/komoot/photon/releases/

12 photon_local

photon <- new_photon("photon”, country = "Monaco")
3
photon_local Local photon instance
Description

This R6 class is used to initialize and manage local photon instances. It can download and setup
the Java, the photon executable, and the necessary ElasticSearch search index. It can start, stop, and
query the status of the photon instance. It is also the basis for geocoding requests at it is used to
retrieve the URL for geocoding.

ElasticSearch / OpenSearch

The standard version of photon uses ElasticSearch indices to geocode. These search indices can be
self-provided by importing an existing Nominatim database or they can be downloaded from the
Photon download server. Use nominatim = TRUE to indicate that no ElasticSearch indices should
be downloaded. See vignette(”"nominatim-import"”, package = "photon”) for details on how
to import from Nominatim.

To enable structured geocoding, the photon geocoder needs to be built to support OpenSearch. Since
photon 0.6.0, OpenSearch jar files are included in the photon releases. OpenSearch indices can also
be downloaded, but do not support structured geocoding as of yet. To enable structured geocoding,
indices have to be imported from an existing Nominatim database.

Super class

photon: :photon -> photon_local

Public fields

path Path to the directory where the photon instance is stored.

proc process object that handles the external process running photon.

Methods

Public methods:

¢ photon_local$new()

¢ photon_local$mount ()

¢ photon_local$info()

* photon_local$purge()

¢ photon_local$import()

¢ photon_local$start()

e photon_local$stop()

* photon_local$download_data()

https://nominatim.org/2020/10/21/photon-country-extracts.html

photon_local 13

e photon_local$remove_data()
* photon_local$is_running()
e photon_local$is_ready()

* photon_local$get_url()

¢ photon_local$get_logs()

¢ photon_local$clone()

Method new(): Initialize a local photon instance. If necessary, downloads the photon executable,
the search index, and Java.
Usage:
photon_local$new(
path,
photon_version = NULL,
country = NULL,
date = "latest”,
exact = FALSE,
section = NULL,
opensearch = FALSE,
overwrite = FALSE,
quiet = FALSE
)

Arguments:

path Path to a directory where the photon executable and data should be stored.

photon_version Version of photon to be used. A list of all releases can be found here: https:
//github.com/komoot/photon/releases/. Ignored if jar is given. If NULL, uses the
latest known version (Currently: 0.6.2).

country Character string that can be identified by countryname as a country. An extract for
this country will be downloaded. If "planet”, downloads a global search index.

date Character string or date-time object used to specify the creation date of the search index.
If "latest”, will download the file tagged with "latest". If a character string, the value
should be parseable by as.POSIXct. If exact = FALSE, the input value is compared to all
available dates and the closest date will be selected. Otherwise, a file will be selected that
exactly matches the input to date.

exact If TRUE, exactly matches the date. Otherwise, selects the date with lowest difference to
the date parameter.

section Subdirectory of the download server from which to select a search index. If "experimental”,
selects a dump made for the master version of photon. If "archived”, selects a dump made
for an older version of photon. If NULL (or any arbitrary string), selects a dump made for
the current release. Defaults to NULL.

opensearch If TRUE, looks for an OpenSearch version of photon in the specified path. Opensearch-
based photon supports structured geocoding queries but has to be built manually using gra-
dle. Hence, it cannot be downloaded directly. If no OpenSearch executable is found in the
search path, then this parameter is set to FALSE. Defaults to FALSE.

overwrite If TRUE, overwrites existing jar files and search indices when initializing a new
instance. Defaults to FALSE.

quiet If TRUE, suppresses all informative messages.

https://github.com/komoot/photon/releases/
https://github.com/komoot/photon/releases/

14

photon_local

Method mount(): Attach the object to the session. If mounted, all geocoding functions send
their requests to the URL of this instance. Manually mounting is useful if you want to switch
between multiple photon instances.

Usage:
photon_local$mount()

Method info(): Retrieve metadata about the java and photon version used as well as the country
and creation date of the Eleasticsearch search index.

Usage:
photon_local$info()

Returns: A list containing the java version, the photon version, and if applicable, the spatial
and temporal coverage of the search index.

Method purge(): Kill the photon process and remove the directory. Useful to get rid of an
instance entirely.

Usage:
photon_local$purge(ask = TRUE)

Arguments:

ask If TRUE, asks for confirmation before purging the instance.

Returns: NULL, invisibly.

Method import(): Import a Postgres Nominatim database to photon. Runs the photon jar file
using the additional parameter -nominatim-import. Requires a running Nominatim database
that can be connected to.

Usage:

photon_local$import(
host = "127.0.0.1",
port = 5432,
database = "nominatim”,
user = "nominatim"”,
password = "",
structured = FALSE,
update = FALSE,
enable_update_api = FALSE,
languages = c("en”, "fr", "de", "it"),
countries = NULL,
extra_tags = NULL,
json = FALSE,
timeout = 60,
java_opts = NULL,
photon_opts = NULL

)

Arguments:

host Postgres host of the database. Defaults to "127.0.0.1".
port Postgres port of the database. Defaults to 5432.

photon_local 15

database Postgres database name. Defaults to "nominatim”.
user Postgres database user. Defaults to "nominatim”.

password Postgres database password. Defaults to

structured If TRUE, enables structured query support when importing the database. This al-
lows the usage of structured. Structured queries are only supported in the OpenSearch
version of photon. See section "OpenSearch" above. Defaults to FALSE.

update If TRUE, fetches updates from the Nominatim database, updating the search index with-
out offering an API. If FALSE, imports the database an deletes the previous index. Defaults
to FALSE.

enable_update_api If TRUE, enables an additional endpoint /nominatim-update, which al-
lows updates from Nominatim databases.

languages Character vector specifying the languages to import from the Nominatim databases.
Defaults to English, French, German, and Italian.

countries Character vector specifying the country codes to import from the Nominatim database.
Defaults to all country codes.

extra_tags Character vector specifying extra OSM tags to import from the Nominatim database.
These tags are used to augment geocoding results. Defaults to NULL.

json If TRUE, dumps the imported Nominatim database to a JSON file and returns the path to
the output file. Defaults to FALSE.

timeout Time in seconds before the java process aborts. Defaults to 60 seconds.
java_opts List of further flags passed on to the java command.

photon_opts List of further flags passed on to the photon jar in the java command. See
cmd_options for a helper function to import external Nominatim databases.

Method start(): Start a local instance of the Photon geocoder. Runs the jar executable located
in the instance directory.
Usage:
photon_local$start(
host = "0.0.0.0",
port = "2322",
ssl = FALSE,
timeout = 60,
java_opts = NULL,
photon_opts = NULL
)
Arguments:
host Character string of the host name that the geocoder should be opened on.
port Port that the geocoder should listen to.
ssl If TRUE, uses https, otherwise http. Defaults to FALSE.
timeout Time in seconds before the java process aborts. Defaults to 60 seconds.
java_opts List of further flags passed on to the java command.
photon_opts List of further flags passed on to the photon jar in the java command. See
cmd_options for a helper function to import external Nominatim databases.

Details: While there is a certain way to determine if a photon instance is ready, there is no
clear way as of yet to determine if a photon setup has failed. Due to this, a failing setup is

photon_local

mostly indicated by the setup hanging after emitting a warning. In this case, the setup has to be
interrupted manually.

Method stop(): Kills the running photon process.
Usage:
photon_local$stop()

Method download_data(): Downloads a search index using download_searchindex.

Usage:
photon_local$download_data(
country = NULL,
date = "latest”,
exact = FALSE,
section = NULL
)

Arguments:

country Character string that can be identified by countryname as a country. An extract for
this country will be downloaded. If NULL, downloads a global search index.

date Character string or date-time object used to specify the creation date of the search index.
If "latest”, will download the file tagged with "latest". If a character string, the value
should be parseable by as.POSIXct. If exact = FALSE, the input value is compared to all
available dates and the closest date will be selected. Otherwise, a file will be selected that
exactly matches the input to date.

exact If TRUE, exactly matches the date. Otherwise, selects the date with lowest difference to
the date parameter.

section Subdirectory of the download server from which to select a search index. If "experimental”,
selects a dump made for the master version of photon. If "archived”, selects a dump made
for an older version of photon. If NULL (or any arbitrary string), selects a dump made for
the current release. Defaults to NULL.

Method remove_data(): Removes the data currently used in the photon directory. This only
affects the unpacked photon_data directory, not archived files.

Usage:

photon_local$remove_data()

Method is_running(): Checks whether the photon instance is running and ready. The differ-
ence to $is_ready() is that $is_running() checks specifically if the running photon instance is
managed by a process from its own photon object. In other words, $is_running() returns TRUE
if both $proc$is_alive() and $is_ready() return TRUE. This method is useful if you want to
ensure that the photon object can control its photon server (mostly internal use).

Usage:
photon_local$is_running()
Returns: A logical of length 1.
Method is_ready(): Checks whether the photon instance is ready to take requests. This is the

case if the photon server returns a HTTP 400 when sending a queryless request. This method is
useful if you want to check whether you can send requests.

photon_local 17

Usage:
photon_local$is_ready()

Returns: A logical of length 1.

Method get_url(): Constructs the URL that geocoding requests should be sent to.

Usage:
photon_local$get_url()

Returns: A URL to send requests to.

Method get_logs(): Retrieve the logs of previous photon runs.

Usage:
photon_local$get_logs()
Returns: Returns a dataframe containing the run ID (rid, the highest number is the most recent

run), a timestamp (ts), the thread, the log type (INFO, WARN, or ERROR), the class trace and
the error message.

Method clone(): The objects of this class are cloneable with this method.

Usage:
photon_local$clone(deep = FALSE)

Arguments:

deep Whether to make a deep clone.

Examples

if (has_java("11")) {
dir <- file.path(tempdir(), "photon")

start a new instance using a Monaco extract
photon <- new_photon(path = dir, country = "Monaco")

start a new instance with an older photon version
photon <- new_photon(path = dir, photon_version = "0.4.1")}

Not run:

import a nominatim database using OpenSearch photon

this example requires the OpenSearch version of photon and a running

Nominatim server.

photon <- new_photon(path = dir, opensearch = TRUE)
photon$start(photon_options = cmd_options(port = 29146, password = "pgpass”))
End(Not run)

18 purge_java

purge_java Purge Java processes

Description

Kill all or selected running Java processes. This function is useful to stop Photon instances when
not being able to kill the process objects. Be aware that you can also kill Java processes other than
the photon application using this function!

Usage

purge_java(pids = NULL, ask = TRUE)

Arguments
pids PIDs to kill. The PIDs should be Java processes. If NULL, tries to kill all Java
processes.
ask If TRUE, asks for consent before killing the processes. Defaults to TRUE.
Details

A list of running Java tasks is retrieved using ps (on Linux and MacOS) or tasklist (on Windows).
Tasks are killed using pkill (on Linux and MacOS) or Taskkill (on Windows).

Value

An integer vector of the pkill / Taskkill status codes or NULL if not running Java processes are
found.

Examples

NOTE: These examples should only be run interactively or when you are
sure that no other java processes are running simultaneously!

Not run:

purge_java() # does nothing if no java processes are running

start a new photon instance

dir <- file.path(tempdir(), "photon")

photon <- new_photon(dir, country = "Samoa")
photon$start()

kill photon using a sledgehammer
purge_java()

photon$start()
kill photon using a scalpel

library(ps)
p <- ps_handle(photon$procs$get_pid())

reverse 19

pids <- sapply(ps_children(p), ps::ps_pid)
purge_java(pids)
End(Not run)

reverse Reverse geocoding

Description

Reverse geocode a set of points to retrieve their corresponding place names. To geocode a place
name or an address, see unstructured or structured geocoding.

Usage

reverse(
.data,
radius = NULL,
limit = 1,
lang = "en”,
osm_tag = NULL,
layer = NULL,
locbias = NULL,
locbias_scale = NULL,
zoom = NULL,
distance_sort = TRUE,
progress = interactive()

)
Arguments

.data A dataframe or list with names lon and lat, or an sfc or sf object containing
point geometries.

radius Numeric specifying the range around the points in . data that is used for search-
ing.

limit Number of results to return. A maximum of 50 results can be returned for a
single search term. Defaults to 1. When more than a single text is provided but
limit is greater than 1, the results can be uniquely linked to the input texts using
the idx column in the output.

lang Language of the results. If "default”, returns the results in local language

osm_tag Character string giving an OSM tag to filter the results by. See details.

layer Character string giving a layer to filter the results by. Can be one of "house”,

non non non

"street”, "locality”, "district”, "city”, "county”, "state”,

or "other”.

country”,

https://wiki.openstreetmap.org/wiki/Tags

20

locbias

locbias_scale

zoom

distance_sort

progress

Details

reverse

Numeric vector of length 2 or any object that can be coerced to a length-2 nu-
meric vector (e.g. a list or sfg object). Specifies a location bias for geocoding in
the format c(lon, lat). Geocoding results are biased towards this point. The
radius of the bias is controlled through zoom and the weight of place prominence
through location_bias_scale.

Numeric vector specifying the importance of prominence in locbias. A higher
prominence scale gives more weight to important places. Possible values range
from O to 1. Defaults to 0.2.

Numeric specifying the radius for which the locbias is effective. Corresponds
to the zoom level in OpenStreetMap. The exact relation to locbias is 0.25 km -
2(18=z0om) ‘Defaults to 16.

If TRUE, sorts the reverse geocoding results based on the distance to the input
point. Defaults to TRUE.

If TRUE, shows a progress bar for longer queries.

Filtering by OpenStreetMap tags follows a distinct syntax explained on https://github.com/
komoot/photon. In particular:

* Include places with tag: key:value

* Exclude places with tag: !'key:value

* Include places with tag key: key

* Include places with tag value: :value

* Exclude places with tag key: !key

» Exclude places with tag value: : !value

Value

An sf dataframe or tibble containing the following columns:

* idx: Internal ID specifying the index of the texts parameter.

» osm_type: Type of OSM element, one of N (node), W (way), R (relation), or P (polygon).

e osm_id: OpenStreetMap ID of the matched element.

* country: Country of the matched place.

» city: City of the matched place.

» osm_key: OpenStreetMap key.

* countrycode: ISO2 country code.

* housenumber: House number, if applicable.

* postcode: Post code, if applicable.

* locality: Locality, if applicable.

* street: Street, if applicable.

e district: District name, if applicable.

https://github.com/komoot/photon
https://github.com/komoot/photon

structured 21

* osm_value: OpenStreetMap tag value.

* name: Place name.

* type: Layer type as described for the layer parameter.
* extent: Boundary box of the match.

Examples

an instance must be mounted first
photon <- new_photon()

works with sf objects
sf_data <- sf::st_sfc(sf::st_point(c(8, 52)), sf::st_point(c(7, 52)))
reverse(sf_data)

... but also with simple dataframes
df_data <- data.frame(lon = c(8, 7), lat = c(52, 52))
reverse(df_data)

limit search radius to 10m
reverse(df_data, radius = 10)

structured Structured geocoding

Description

Geocode a set of place information such as street, house number, or post code. Structured geocoding
is generally more accurate but requires more information than unstructured geocoding.

Note that structured geocoding must be specifically enabled when building a Nominatim database. It

is generally not available on komoot’s public API and on pre-built search indices through download_searchindex.
See vignette("nominatim-import"”, package = "photon”) for details. You can use the helper

function has_structured_support() to check if the current API supports structured geocoding.

Usage

structured(
.data,
limit = 1,
lang = "en”,
bbox = NULL,
osm_tag = NULL,
layer = NULL,

locbias = NULL,
locbias_scale = NULL,
zoom = NULL,

progress = interactive()

has_structured_support()

22

Arguments

.data

limit

lang
bbox
osm_tag

layer

locbias

locbias_scale

zoom

progress

Details

structured

Dataframe or list containing structured information on a place to geocode. Can
contain the columns street, housenumber, postcode, city, district, county,
state, and countrycode. At least one of these columns must be present in the
dataframe. Note that countries must be passed as ISO-2 country codes.

Number of results to return. A maximum of 50 results can be returned for a
single search term. Defaults to 1. When more than a single text is provided but
limit is greater than 1, the results can be uniquely linked to the input texts using
the idx column in the output.

Language of the results. If "default”, returns the results in local language.
Any object that can be parsed by st_bbox. Results must lie within this bbox.
Character string giving an OSM tag to filter the results by. See details.

Character string giving a layer to filter the results by. Can be one of "house”,
"street”, "locality”, "district”, "city”, "county”, "state", "country”,

or "other”.

Numeric vector of length 2 or any object that can be coerced to a length-2 nu-
meric vector (e.g. a list or sfg object). Specifies a location bias for geocoding in
the format c(lon, lat). Geocoding results are biased towards this point. The
radius of the bias is controlled through zoom and the weight of place prominence
through location_bias_scale.

Numeric vector specifying the importance of prominence in locbias. A higher
prominence scale gives more weight to important places. Possible values range
from O to 1. Defaults to 0.2.

Numeric specifying the radius for which the locbias is effective. Corresponds
to the zoom level in OpenStreetMap. The exact relation to locbias is 0.25 km -
2(18=z00m) Defaults to 16.

If TRUE, shows a progress bar for longer queries.

Filtering by OpenStreetMap tags follows a distinct syntax explained on https://github.com/
komoot/photon. In particular:

¢ Include places with tag: key:value

* Exclude places with tag: !'key:value

* Include places with tag key: key

¢ Include places with tag value: :value

* Exclude places with tag key: !key

* Exclude places with tag value: : !value

Value

An sf dataframe or tibble containing the following columns:

 idx: Internal ID specifying the index of the texts parameter.

https://wiki.openstreetmap.org/wiki/Tags
https://github.com/komoot/photon
https://github.com/komoot/photon

structured

* osm_type: Type of OSM element, one of N (node), W (way), R (relation), or P (polygon).
* osm_id: OpenStreetMap ID of the matched element.

* country: Country of the matched place.

» city: City of the matched place.

* osm_key: OpenStreetMap key.

* countrycode: ISO2 country code.

* housenumber: House number, if applicable.

* postcode: Post code, if applicable.

* locality: Locality, if applicable.

* street: Street, if applicable.

* district: District name, if applicable.

» osm_value: OpenStreetMap tag value.

* name: Place name.

* type: Layer type as described for the layer parameter.

* extent: Boundary box of the match.

Examples

Not run:

structured() requires an OpenSearch instance with structured support
the following code will not work off the shelf

refer to vignette("nominatim-import”) for details

dir <- file.path(tempdir(), "photon")

photon <- new_photon(dir, opensearch = TRUE)

photon$import(password = "psqgl_password”, structured = TRUE)
photon$start()

check if structured() is supported
has_structured_support()

structured() works on dataframes containing structurized data

place_data <- data.frame(
housenumber = c(NA, "77C", NA),
street = c("Falealilli Cross Island Road”, "Main Beach Road”, "Le Mafa Pass Road"),
state = c("Tuamasaga”, "Tuamasaga”, "Atua")

)

structured(place_data, limit = 1)

countries must be specified as iso2 country codes
structured(data.frame(countrycode = "ws"))

traditional parameters from geocode() can also be used but are much more niche
structured(data.frame(city = "Apia"”), layer = "house") # matches nothing

structured geocoding can discern small differences in places
safune <- data.frame(
city = c("Safune”, "Safune"),

24

state = c("Gaga'ifomauga”, "Tuamasaga")
)

structured(safune, limit = 1)

End(Not run)

structured

Index

as.POSIXct, 4, 11,13,16

cmd_options, 2, 15
countryname, 4, 11,13, 16

download_photon, 3
download_searchindex, 4, 16, 21

geocode, 5, 9
get_instance, 8
get_photon_url (get_instance), 8

has_java, 9
has_structured_support (structured), 21

latinize, 6,9
new_photon, 8, 10

photon: :photon, 12
photon_local, 10, 12
process, 12, 18
purge_java, 18

reverse, 19
run, 2

st_bbox, 6, 22
structured, 9, 15, 19, 21
structured geocoding, 5
system2, 2

unstructured, /9
unstructured geocoding, 2/

25

	cmd_options
	download_photon
	download_searchindex
	geocode
	get_instance
	has_java
	latinize
	new_photon
	photon_local
	purge_java
	reverse
	structured
	Index

