Package ‘ARTtransfer’

January 20, 2025

Type Package

Title Adaptive and Robust Pipeline for Transfer Learning
Version 1.0.0

Date 2024-10-16

Description Adaptive and Robust Transfer Learning (ART) is a flexible framework for transfer learn-
ing that integrates information from auxiliary data sources to improve model performance on pri-
mary tasks. It is designed to be robust against negative transfer by including the non-
transfer model in the candidate pool, ensuring stable performance even when auxil-
iary datasets are less informative. See the pa-
per, Wang, Wu, and Ye (2023) <doi:10.1002/sta4.582>.

Imports gbm, glmnet, nnet, randomForest, stats
Encoding UTF-8

License GPL-2

VignetteBuilder knitr

Suggests knitr, rmarkdown

Repository CRAN

RoxygenNote 7.3.0

NeedsCompilation no

Author Boxiang Wang [aut, cre],
Yunan Wu [aut],
Chenglong Ye [aut]

Maintainer Boxiang Wang <boxiang-wang@uiowa.edu>
Date/Publication 2024-10-24 15:10:14 UTC

Contents
ART . . e e e 2
ART_I_AM . . . e e e 4
fit_gbm e 5
fittglmnet_Im L 6
fit_glmnet_logit 7

https://doi.org/10.1002/sta4.582

it Im . . e

At nnet e

12 1

Index

ART ART: Adaptive and Robust Transfer Learning

Description

ART is a flexible framework for transfer learning that leverages information from auxiliary data
sources to enhance model performance on primary tasks. It is designed to be robust against negative
transfer by including the non-transfer model in the candidate pool, ensuring stable performance even
when auxiliary datasets provide limited or no useful information. The ART framework supports
both regression and classification tasks, aggregating predictions from multiple auxiliary models
and the primary model using an adaptive exponential weighting mechanism to prevent negative
transfer. Variable importance is also provided to indicate the contribution of each variable in the

final model.

Usage

ART(
X,
Y,
X_aux,
y_aux,
X_test,
func,
lam = 1,
maxit = 5000L,
eps = le-06,
type = c("regression”, "classification"),
is_coef = TRUE,
importance = TRUE,

)
Arguments
X A matrix for the primary dataset (target domain) predictors.
y A vector for the primary dataset (target domain) responses.
X_aux A list of matrices for the auxiliary datasets (source domains) predictors.

y_aux A list of vectors for the auxiliary datasets (source domains) responses.

ART 3

X_test A matrix for the test dataset predictors.

func A function used to fit the model on each dataset. The function must have the fol-
lowing signature: func(X, y, X_val, y_val, X_test, min_prod = 1e-5, max_prod
=1-1e-5, ...). The function should return a list with the following elements:

* dev: The deviance (or loss) on the validation set if provided.
* pred: The predictions on the test set if X_test is provided.

» coef (optional): The model coefficients (only for regression models when
is_coef = TRUE).

Pre-built wrapper functions, such as fit_Im, fit_logit, fit_glmnet_1m, fit_glmnet_logit,
fit_random_forest, fit_gbm, and fit_nnet, can be used. Users may also

provide their own model-fitting functions, but the input and output structure

must follow the described signature and format.

lam A regularization parameter for weighting the auxiliary models. Default is 1.
maxit The maximum number of iterations for the model. Default is 5000.

eps A convergence threshold for stopping the iterations. Default is le-6.

type A string specifying the task type. Options are "regression” or "classification".

Default is "regression".
is_coef Logical; if TRUE, coefficients from the model are returned. Default is TRUE.

importance Logical; if TRUE, variable importance is calculated. Only applicable if ‘is_coef*
is TRUE. Default is TRUE.

Additional arguments passed to the model-fitting function.

Details

The ART function performs adaptive and robust transfer learning by iteratively combining pre-
dictions from the primary dataset and auxiliary datasets. It updates the weights of each dataset’s
predictions through an aggregation process, eventually yielding a final set of predictions based on
weighted contributions from the source and target models.

The auxiliary datasets (‘X_aux‘ and ‘y_aux‘) must be provided as lists, with each element corre-
sponding to a dataset from a different source domain.

Value

A list containing:

pred_ART The predictions for the test dataset.

coef_ART The coefficients of the final model, if ‘is_coef* is TRUE.

W_ART The final weights for each dataset (including the primary dataset).
iter_ART The number of iterations performed until convergence.

VI_ART The variable importance, if ‘importance is TRUE.

4 ART I AM

Examples

Example usage
dat <- generate_data(n@=50, K=3, nk=50, K_noise=2, nk_noise=30, p=10,
mu_trgt=1, xi_aux=0.5, ro=0.5, err_sig=1)
fit <- ART(datX, daty, datX_aux, daty_aux, dat$X_test, func=fit_1lm, lam=1, type="regression")

ART_I_AM ART I AM: ART-Integrated-Aggregrating Machines

Description

‘ART_I_AM* performs adaptive and robust transfer learning through the aggregration of multiple
machine learning models, specifically random forests, AdaBoost, and neural networks. This method
aggregates the predictions from these models across multiple auxiliary datasets and the primary
dataset to enhance model performance on the primary task. Users do not need to specify the models
in the function, while the framework is general and users can write their own function integrating
other machine learning models.

Usage
ART_I_AM(X, y, X_aux, y_aux, X_test, lam = 1, maxit = 5000L, eps = 1e-06, ...)
Arguments
X A matrix for the primary dataset (target domain) predictors.
y A vector for the primary dataset (target domain) responses.
X_aux A list of matrices for the auxiliary datasets (source domains) predictors.
y_aux A list of vectors for the auxiliary datasets (source domains) responses.
X_test A matrix for the test dataset predictors.
lam A regularization parameter for weighting the auxiliary models. Default is 1.
maxit The maximum number of iterations for the aggregation process. Default is 5000.
eps A convergence threshold for stopping the iterations. Default is 1e-6.
Not used in ART_I_AM.
Details

The ‘ART_I_AM* function automatically integrates three machine learning models: - Random For-
est (‘fit_rf*) - AdaBoost (‘fit_gbm*) - Neural Network (‘fit_nnet®)

These models are applied to both the primary dataset and auxiliary datasets. The function aggregates
the predictions of each model using adaptive weights determined by the exponential weighting
scheme. The aggregation improves the prediction power by considering different models and data
simultaneously.

fit_gbm

Value

A list containing:

pred_ART The predictions for the test dataset aggregated from the different models and
datasets.
W_ART The final weights for each model and dataset combination.
iter_ART The number of iterations performed until convergence.
fit_gbm fit_gbm: Gradient Boosting Wrapper for the ARTtransfer package
Description

This function fits a gradient boosting model using ‘gbm()‘ from the R package gbm. It returns the
deviance on a validation set and predictions on a test set. It is designed for use in the ‘ART* adaptive
and robust transfer learning framework.

Usage

fit_gbm(
X,
Y,
X_val,
y_val,
X_test,

min_prod = 1e-05,
max_prod = 1 - 1e-05,

Arguments
X

y
X_val

y_val

X_test

min_prod

max_prod

A matrix of predictors for the training set.
A vector of binary responses for the training set.

A matrix of predictors for the validation set. If ‘NULL‘, deviance is not calcu-
lated.

A vector of binary responses for the validation set. If ‘NULL, deviance is not
calculated.

A matrix of predictors for the test set. If ‘NULL*, predictions are not generated.

A numeric value indicating the minimum probability bound for predictions. De-
fault is ‘le-5°.

A numeric value indicating the maximum probability bound for predictions. De-
faultis ‘1-1e-5°.

Additional arguments passed to the ‘gbm()* function.

6 fit_glmnet_Im

Value

A list containing:

dev The deviance (negative log-likelihood) on the validation set if provided, other-
wise ‘NULL".
pred The predicted probabilities on the test set if ‘X_test* is provided, otherwise
‘NULL".
Examples

Fit a gradient boosting model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)

y_train <- rbinom(100, 1, 0.5)

X_val <- matrix(rnorm(50 * 5), 50, 5)

y_val <- rbinom(50, 1, 0.5)

X_test <- matrix(rnorm(20 * 5), 20, 5)

fit <- fit_gbm(X_train, y_train, X_val, y_val, X_test)

fit_glmnet_Im fit_glmnet_Im: Sparse Linear Regression Wrapper for the ARTtransfer
package

Description

This function fits a sparse linear regression model using ‘glmnet()‘ from the R package glmnet for
regression. It returns the coefficients, deviance on a validation set, and predictions on a test set. It
is designed for use in the ‘ART* adaptive and robust transfer learning framework.

Usage

fit_glmnet_1m(
X,
Y,
X_val,
y_val,
X_test,
min_prod = 1e-05,
max_prod = 1 - 1e-05,
nfolds = 5,

fit_glmnet_logit

Arguments
X

y
X_val

y_val

X_test

min_prod

max_prod

nfolds

Value
A list containing:

dev

pred

coef

Examples

A matrix of predictors for the training set.
A vector of responses for the training set.

A matrix of predictors for the validation set. If ‘NULL°, deviance is not calcu-
lated.

A vector of responses for the validation set. If ‘NULL, deviance is not calcu-
lated.

A matrix of predictors for the test set. If ‘NULL*, predictions are not generated.

A numeric value indicating the minimum probability bound for predictions (not
used in this function but passed for compatibility). Default is ‘1e-5°.

A numeric value indicating the maximum probability bound for predictions (not
used in this function but passed for compatibility). Default is ‘1-1e-5°.

An integer specifying the number of folds for cross-validation. Default is 5.

Additional arguments passed to the function.

The mean squared error (deviance) on the validation set if provided, otherwise
‘NULL".

The predictions on the test set if ‘X_test" is provided, otherwise ‘NULL".

The fitted coefficients of the sparse linear model.

Fit a sparse linear model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)

y_train <- X_train %*% rnorm(5) + rnorm(100)

X_val <- matrix(rnorm(5@ * 5), 50, 5)

y_val <- X_val %*% rnorm(5) + rnorm(50)

X_test <- matrix(rnorm(20 * 5), 20, 5)

fit <- fit_glmnet_lm(X_train, y_train, X_val, y_val, X_test)

fit_glmnet_logit

fit_glmnet_logit: Sparse Logistic Regression Wrapper for the ART-
transfer package

Description

This function fits a sparse logistic regression model using ‘glmnet()‘ from the R package glmnet for
classification. It returns the coefficients, deviance on a validation set, and predictions on a test set.
It is designed for use in the ‘ART* adaptive and robust transfer learning framework.

8 fit_glmnet_logit

Usage
fit_glmnet_logit(
X,
Yy,
X_val,
y_val,
X_test,
min_prod = 1e-05,
max_prod = 1 - 1e-05,
nfolds = 5,
)
Arguments
X A matrix of predictors for the training set.
y A vector of binary responses for the training set.
X_val A matrix of predictors for the validation set. If ‘NULL, deviance is not calcu-
lated.
y_val A vector of binary responses for the validation set. If ‘NULL, deviance is not
calculated.
X_test A matrix of predictors for the test set. If ‘NULL", predictions are not generated.
min_prod A numeric value indicating the minimum probability bound for predictions. De-
faultis ‘le-5°.
max_prod A numeric value indicating the maximum probability bound for predictions. De-
faultis ‘1-1e-5°.
nfolds An integer specifying the number of folds for cross-validation. Default is 5.
Additional arguments passed to the function.
Value

A list containing:

dev The deviance (negative log-likelihood) on the validation set if provided, other-
wise ‘NULL".
pred The predicted probabilities on the test set if ‘X _test® is provided, otherwise
‘NULL".
coef The fitted coefficients of the sparse logistic model.
Examples

Fit a sparse logistic regression model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)

y_train <- rbinom(100, 1, 0.5)

X_val <- matrix(rnorm(50 * 5), 50, 5)

y_val <- rbinom(50, 1, 0.5)

fit_ Im 9

X_test <- matrix(rnorm(20 * 5), 20, 5)

fit <- fit_glmnet_logit(X_train, y_train, X_val, y_val, X_test)

fit_1lm fit_Im: Linear Regression Wrapper for the ARTtransfer package

Description

This function fits a linear regression model using ‘Im()* and returns the coefficients, deviance on a
validation set, and predictions on a test set. It is specifically designed for use in the ‘ART* adaptive
and robust transfer learning framework.

Usage
fit_1m(X, y, X_val, y_val, X_test, min_prod = 1e-@5, max_prod = 1 - 1e-05, ...)
Arguments
X A matrix of predictors for the training set.
y A vector of responses for the training set.
X_val A matrix of predictors for the validation set. If ‘NULL®, deviance is not calcu-
lated.
y_val A vector of responses for the validation set. If ‘NULL*, deviance is not calcu-
lated.
X_test A matrix of predictors for the test set. If ‘NULL*, predictions are not generated.
min_prod A numeric value indicating the minimum probability bound for predictions (not
used in this function but passed for compatibility). Default is ‘le-5°.
max_prod A numeric value indicating the maximum probability bound for predictions (not
used in this function but passed for compatibility). Default is ‘1-1e-5°.
Additional arguments passed to the function (currently unused).
Value

A list containing:

dev The mean squared error (deviance) on the validation set if provided, otherwise
‘NULL".
pred The predictions on the test set if ‘X_test* is provided, otherwise ‘NULL".

coef The fitted coefficients of the linear model.

10 fit_logit

Examples

Fit a linear model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)

y_train <- X_train %*% rnorm(5) + rnorm(100)

X_val <- matrix(rnorm(50 * 5), 50, 5)

y_val <- X_val %*% rnorm(5) + rnorm(50)

X_test <- matrix(rnorm(20 * 5), 20, 5)

fit <- fit_lm(X_train, y_train, X_val, y_val, X_test)

fit_logit fit_logit: Logistic Regression Wrapper for the ARTtransfer package

Description

This function fits a logistic regression model using ‘glm()‘ and returns the coefficients, deviance on
a validation set, and predictions on a test set. It is specifically designed for use in the ‘ART* adaptive
and robust transfer learning framework.

Usage

fit_logit(
X,
\
X_val,
y_val,
X_test,
min_prod = 1e-05,
max_prod = 1 - 1e-05,

)
Arguments

X A matrix of predictors for the training set.

y A vector of binary responses for the training set.

X_val A matrix of predictors for the validation set. If ‘NULL*, deviance is not calcu-
lated.

y_val A vector of binary responses for the validation set. If ‘NULL‘, deviance is not
calculated.

X_test A matrix of predictors for the test set. If ‘“NULL*, predictions are not generated.

min_prod A numeric value indicating the minimum probability bound for predictions. De-
fault is ‘le-5°.

max_prod A numeric value indicating the maximum probability bound for predictions. De-

fault is ‘1-1e-5°.

Additional arguments passed to the function (currently unused).

fit_nnet 11

Value

A list containing:

dev The deviance (negative log-likelihood) on the validation set if provided, other-
wise ‘NULL".
pred The predicted probabilities on the test set if ‘X_test® is provided, otherwise
‘NULL".
coef The fitted coefficients of the logistic model.
Examples

Fit a logistic regression model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)

y_train <- rbinom(100, 1, 0.5)

X_val <- matrix(rnorm(50 * 5), 50, 5)

y_val <- rbinom(50, 1, 0.5)

X_test <- matrix(rnorm(20 * 5), 20, 5)

fit <- fit_logit(X_train, y_train, X_val, y_val, X_test)

fit_nnet fit_nnet: Neural Network Wrapper for the ARTtransfer package

Description

This function fits a neural network model using ‘nnet()‘ from the R package nnet. It returns the
deviance on a validation set and predictions on a test set. It is designed for use in the ‘ART* adaptive
and robust transfer learning framework.

Usage

fit_nnet(
X,
Y,
X_val,
y_val,
X_test,
min_prod
max_prod

le-05,
1 - 1e-05,

12 fit_rf
Arguments
X A matrix of predictors for the training set.
y A vector of binary responses for the training set.
X_val A matrix of predictors for the validation set. If ‘NULL, deviance is not calcu-
lated.
y_val A vector of binary responses for the validation set. If ‘NULL, deviance is not
calculated.
X_test A matrix of predictors for the test set. If ‘NULL®, predictions are not generated.
min_prod A numeric value indicating the minimum probability bound for predictions. De-
faultis ‘le-5°.
max_prod A numeric value indicating the maximum probability bound for predictions. De-
fault is ‘1-1e-5°.
Additional arguments passed to ‘nnet()‘.
Value
A list containing:
dev The deviance (negative log-likelihood) on the validation set if provided, other-
wise ‘NULL".
pred The predicted probabilities on the test set if ‘X_test‘ is provided, otherwise
‘NULL".
Examples
Fit a neural network model with validation and test data
X_train <- matrix(rnorm(100 * 5), 100, 5)
y_train <- rbinom(100, 1, 0.5)
X_val <- matrix(rnorm(5@ * 5), 50, 5)
y_val <- rbinom(50@, 1, 0.5)
X_test <- matrix(rnorm(20 * 5), 20, 5)
fit <- fit_nnet(X_train, y_train, X_val, y_val, X_test)
fit_rf fit_rf: Random Forest Wrapper for the ARTtransfer package
Description

This function fits a random forest classification model using ‘randomForest()‘ from the R package
randomForest. It returns the deviance on a validation set and predictions on a test set. It is designed
for use in the ‘ART* adaptive and robust transfer learning framework.

fit_rf 13
Usage
fit_rf(X, y, X_val, y_val, X_test, min_prod = 1e-05, max_prod = 1 - 1e-05, ...)
Arguments
X A matrix of predictors for the training set.
y A vector of binary responses for the training set.
X_val A matrix of predictors for the validation set. If ‘NULL‘, deviance is not calcu-
lated.
y_val A vector of binary responses for the validation set. If ‘NULL, deviance is not
calculated.
X_test A matrix of predictors for the test set. If ‘NULL", predictions are not generated.
min_prod A numeric value indicating the minimum probability bound for predictions. De-
faultis ‘le-5°.
max_prod A numeric value indicating the maximum probability bound for predictions. De-
faultis ‘1-1e-5°.
Additional arguments passed to the ‘randomForest() function.
Value

A list containing:

dev

pred

Examples

The deviance (negative log-likelihood) on the validation set if provided, other-
wise ‘NULL".

The predicted probabilities on the test set if ‘X_test‘ is provided, otherwise
‘NULL".

Fit a random forest model with validation and test data
X_train <- matrix(rnorm(10@ * 5), 100, 5)

y_train <- rbinom(100, 1, 0.5)

X_val <- matrix(rnorm(50 * 5), 50, 5)

y_val <- rbinom(50, 1, 0.5)

X_test <- matrix(rnorm(20 x 5), 20, 5)

fit <- fit_rf(X_train, y_train, X_val, y_val, X_test)

14

generate_data

generate_data

generate_data: Generate synthetic primary, auxiliary, and noisy
datasets for transfer learning

Description

This function generates synthetic datasets for the primary task (target domain), auxiliary datasets
(source domains), and noisy datasets for use in transfer learning simulations. It allows flexible input
for the sizes of the auxiliary and noisy datasets, supports different covariance structures, and can
optionally generate test datasets. Users can specify true coefficients or rely on random generation.
The function supports generating datasets for both regression and binary classification tasks.

Usage

ge

nerate_data(

no,

p,

K,

nk,

is_noise = TRUE,
K_noise = 2,
nk_noise = 30,
mu_trgt,

xi_aux,

ro,

err_sig,

true_beta = NULL,
noise_beta = NULL,
Sigma_type = "AR",
is_test = TRUE,
n_test = no,

task = "regression”

Arguments

no

nk

An integer specifying the number of observations in the primary dataset (target
domain).

An integer specifying the dimension, namely the number of predictors. All the
generated data must have the same dimension.

An integer specifying the number of auxiliary datasets (source domains).

Either an integer specifying the number of observations in each auxiliary dataset
(source domains), or a vector where each element specifies the size of the corre-
sponding auxiliary dataset. If ‘nk‘ is a vector, its length must match the number
of auxiliary datasets (‘K*).

generate_data

is_noise

K_noise

nk_noise

mu_trgt

Xi_aux

ro

err_sig

true_beta

noise_beta

Sigma_type

is_test

n_test

task

Details

15

Logical; if TRUE, includes noisy data. If FALSE, ‘K_noise‘ and ‘nk_noise‘ are
ignored. Default is TRUE.

An integer specifying the number of noisy auxiliary datasets. If ‘K_noise = 0°,
noisy datasets are skipped. If ‘is_noise = FALSE‘, this argument is not used.

Either an integer specifying the number of observations in each noisy dataset,
or a vector where each element specifies the size of the corresponding noisy
dataset. If ‘nk_noise‘ is a vector, its length must match the number of noisy
datasets (‘K_noise®).

A numeric value specifying the mean of the true coefficients in the primary
dataset.

A numeric value representing the shift applied to the true coefficients in the
auxiliary datasets.

A numeric value representing the correlation between predictors (applies to the
covariance matrix).

A numeric value specifying the standard deviation of the noise added to the
response.

A vector of true coefficients for the primary dataset. If ‘NULL’, it is randomly
generated. Default is ‘NULL".

A vector of noise coefficients. If ‘NULL", it is set to ‘-true_beta‘. Default is
‘NULL".

A string specifying the covariance structure for the predictors. Options are:
"AR" (auto-regressive structure) or "CS" (compound symmetry structure). De-
faultis "AR".

Logical; if TRUE, generates test dataset (‘X_test*, ‘y_test‘). Default is TRUE.
An integer specifying the number of observations in the test data. Default is nO.

A string specifying the type of task. Options are "regression" or "classification".
Default is "regression".

The function first generates a covariance matrix based on the specified ‘Sigma_type°, then cre-
ates the primary dataset (‘X°, ‘y*), the auxiliary datasets (‘X_aux®, ‘y_aux‘), and optionally gener-
ates test datasets (‘X_test‘, ‘y_test*). The auxiliary datasets are combined with noisy datasets into
‘X_aux‘ and ‘y_aux‘ for transfer learning use.

If ‘is_noise = FALSE®, then no noisy data is generated and ‘K_noise‘ and ‘nk_noise* are ignored.
If ‘K_noise = 0°, noisy data is skipped regardless of the value of ‘is_noise‘. The task can be either
"regression” or "classification". In classification mode, binary response variables are generated
using a logistic function.

If ‘nk* or ‘nk_noise‘ is a vector, it checks if its length matches the number of auxiliary or noisy +,
respectively. If the lengths do not match, an error is returned.

Value

A list containing:

16 stan

X The primary dataset predictors (target domain).
y The primary dataset responses (target domain).
X_aux A list of matrices combining auxiliary and noisy dataset predictors.
y_aux A list of vectors combining auxiliary and noisy dataset responses.
X_test The test dataset predictors, if ‘is_test=TRUE".
y_test The test dataset responses, if ‘is_test=TRUE‘.

Examples

Example: Generate data with auxiliary, noisy, and test datasets for regression
dat_reg <- generate_data(n0=100, p=10, K=3, nk=50, is_noise=TRUE, K_noise=2, nk_noise=30,
mu_trgt=1, xi_aux=0.5, ro=0.3, err_sig=1,
is_test=TRUE, task="regression")

Example: Generate data with auxiliary, noisy, and test datasets for classification
dat_class <- generate_data(n@=100, p=10, K=3, nk=50, is_noise=TRUE, K_noise=2, nk_noise=30,
mu_trgt=1, xi_aux=0.5, ro=0.3, err_sig=1,
is_test=TRUE, task="classification")

Display the dimensions of the generated data
cat("Primary dataset (X):", dim(dat_reg$X), "\n") # Should print 100 x 10 for regression
cat("Primary dataset (y):", length(dat_reg$y), "\n") # Should print length 100 for regression

Display the dimensions of auxiliary datasets
cat("Auxiliary dataset 1 (X_aux[[11]1):", dim(dat_reg$X_aux[[1]1]), "\n") # Should print 50 x 10
cat("Auxiliary dataset 2 (X_aux[[2]1):", dim(dat_reg$X_aux[[2]11), "\n") # Should print 50 x 10

Display the dimensions of noisy datasets (if generated)
cat(”"Noisy dataset 1 (X_aux[[411):", dim(dat_reg$X_aux[[4]11), "\n") # Should print 30 x 10

Display test data dimensions (if generated)
if (!is.null(dat_reg$X_test)) {
cat("Test dataset (X_test):", dim(dat_reg$X_test), "\n") # Should print 100 x 10
cat("Test dataset (y_test):", length(dat_reg$y_test), "\n") # Should print length 100
3

stan stan: Standardize Training, Validation, and Test Datasets

Description

This function standardizes the training, validation, and test datasets by centering and scaling them
using the mean and standard deviation from the training set. It ensures that the validation and test
sets are transformed using the same parameters derived from the training data.

Usage

stan(train, validation = NULL, test = NULL)

stan 17

Arguments
train A list containing the training set. The list must have a component ‘X* for pre-
dictors.
validation A list containing the validation set. The list must have a component ‘X* for
predictors. If ‘NULL', the validation set is not standardized. Default is ‘NULL".
test A list containing the test set. The list must have a component ‘X for predictors.
If ‘'NULLY', the test set is not standardized. Default is ‘NULL".
Value

A list with the following components:

train The standardized training set, with predictors centered and scaled.

validation The standardized validation set (if provided), standardized using the training
set’s mean and standard deviation.

test The standardized test set (if provided), standardized using the training set’s mean
and standard deviation.

Examples

Example usage

train_data <- list(X = matrix(rnorm(100), ncol=10))
validation_data <- list(X = matrix(rnorm(50), ncol=10))
test_data <- list(X = matrix(rnorm(50), ncol=10))

standardized <- stan(train = train_data, validation = validation_data, test = test_data)

Index

ART, 2
ART_I_AM, 4

fit_gbm, 5
fit_glmnet_1m, 6
fit_glmnet_logit, 7
fit_1m, 9
fit_logit, 10
fit_nnet, 11
fit_rf, 12

generate_data, 14

stan, 16

18

	ART
	ART_I_AM
	fit_gbm
	fit_glmnet_lm
	fit_glmnet_logit
	fit_lm
	fit_logit
	fit_nnet
	fit_rf
	generate_data
	stan
	Index

