Title: | Unifying Multiple Biplot Visualisations into a Single Display |
Version: | 1.1.1 |
Description: | Aligning multiple visualisations by utilising generalised orthogonal Procrustes analysis (GPA) before combining coordinates into a single biplot display as described in Nienkemper-Swanepoel, le Roux and Lubbe (2023)<doi:10.1080/03610918.2021.1914089>. This is mainly suitable to combine visualisations constructed from multiple imputations, however, it can be generalised to combine variations of visualisations from the same datasets (i.e. resamples). |
License: | MIT + file LICENSE |
Encoding: | UTF-8 |
RoxygenNote: | 7.3.2 |
Depends: | R (≥ 4.1.0) |
Imports: | ca, jomo, mi, mice, missMDA, mitools, stringr |
Suggests: | testthat, knitr |
Config/Needs/website: | rmarkdown |
BugReports: | https://github.com/jnienk/GPAbin/issues |
URL: | https://jnienk.github.io/GPAbin/ |
NeedsCompilation: | no |
Packaged: | 2025-10-02 14:50:48 UTC; nienkemperj |
Author: | Johané Nienkemper-Swanepoel
|
Maintainer: | Johané Nienkemper-Swanepoel <nienkemperj@sun.ac.za> |
Repository: | CRAN |
Date/Publication: | 2025-10-02 16:50:08 UTC |
Category level prediction
Description
Predicts category levels from an MCA based biplot using the distances between coordinates
Usage
CLPpred(CLPs = CLPs, Zs = Zs, p = p, n = n, lvls = lvls, datIN = datIN)
Arguments
CLPs |
Category level point coordinates |
Zs |
Sample coordinates |
p |
Number of variables |
n |
Number of samples |
lvls |
Names of category levels |
datIN |
Input data from which |
Value
predCL |
Final predicted categorical data set |
Dimension reduction
Description
Multiple correspondence analysis is performed on the multiple imputed datasets
Usage
DRT(missbp, method = c("MCA"))
Arguments
missbp |
An object of class |
method |
Select a dimension reduction technique. In the current version |
Value
The missbp
object is appended with the following objects:
Z |
List of sample coordinates |
CLP |
List of category level point coordinates |
lvls |
List of category level names |
m |
Number of multiple imputations |
Examples
data(implist)
missbp <- missmi(implist) |> DRT()
Generalised Orthogonal Procrustes Analysis
Description
This function contains the OPA function to compare two configurations and the GPA function for multiple configuration comparisons
Usage
GPA(Xk, G.target = NULL, iter = 500, eps = 0.001)
Arguments
Xk |
list containing the testee configurations which is updated on #each iteration |
G.target |
Target configuration. If not specified the centroid configuration will be used as the target |
iter |
Number of iterations allowed before convergence |
eps |
Threshold value for convergence of the alogrithm |
Value
Xk.F |
List containing the updated testee configurations |
sk.F |
Vector containing the final scaling factors |
Qk.F |
List containing the final rotation matrices |
Gmat |
Final target configuration |
sum.sq |
Final minimised sum of squared distance |
Function to unify coordinates of multiple configurations
Description
Combines multiple configurations from dimension reduction solutions applied to multiple imputed data sets
Usage
GPAbin(missbp, G.target = NULL)
Arguments
missbp |
An object of class |
G.target |
Target configuration. If not specified the centroid configuration will be used as the target. |
Value
The missbp
object is appended with the following objects:
Z.GPA.list |
List containing the sample coordinates for each MI after GPA |
CLP.GPA.list |
List containing the CLPs for each MI after GPA |
G.target |
Target configuration |
Z.GPAbin |
Sample coordinates for the GPAbin biplot |
CLP.GPAbin |
CLPs for the GPAbin biplot |
See also missmi
, impute
and DRT
.
For more detail, refer to Nienkemper-Swanepoel, J., le Roux, N. J., & Gardner-Lubbe, S. (2021). GPAbin: unifying visualizations of multiple imputations for missing values. Communications in Statistics - Simulation and Computation, 52(6), 2666–2685. https://doi.org/10.1080/03610918.2021.1914089.
Examples
data(implist)
missbp <- missmi(implist) |> DRT() |> GPAbin()
Orthogonal Procrustes Analysis
Description
This function performs Orthogonal Procrustes Analysis on centred data
Usage
OPA(missbp, compdat, centring = TRUE, dim = "2D")
Arguments
missbp |
An object of class |
compdat |
Complete data set, only available for simulated data examples. |
centring |
Logical argument to apply centering, default is |
dim |
Number of dimensions to use in final solutions ( |
Value
ProcStat |
Procrustes Statistic |
compZ |
Sample coordinates representing the complete data set |
compCLP |
Category level point coordinates representing the complete data set |
complvls |
Category levels |
compdat |
Complete data set, only available for simulated data examples |
Biplot function
Description
Creates a multiple correspondence analysis (MCA) biplot
Usage
biplFig(
missbp,
Z.col = "#61223b",
CLP.col = "#b79962",
Z.pch = 19,
CLP.pch = 15,
Z.cex = 1.5,
CLP.cex = 1.7,
title = ""
)
Arguments
missbp |
An object of class |
Z.col |
Colour of sample coordinates |
CLP.col |
Colour of category level point coordinates |
Z.pch |
Plotting character of sample coordinates |
CLP.pch |
Plotting character of category level point coordinates |
Z.cex |
Size of plotting character for sample points |
CLP.cex |
Size of plotting character for category level point points |
title |
Title of the plot |
Value
If
compdat = NULL
inevalMeas
, only a GPAbin biplot will be constructed.If a complete data set (
compdat
) was specified inevalMeas
, two biplots will be constructed: (1) Complete MCA biplot and (2) GPAbin biplot.
Examples
data(implist)
missbp <- missmi(implist)|> DRT() |> GPAbin() |> biplFig()
Complete data example
Description
Simulated data example
Format
A data frame with 1000 rows and 5 columns.
Details
- V1
Variable 1
- V1
Variable 2
- V1
Variable 3
- V1
Variable 4
- V1
Variable 5
Source
Simulated data from a uniform distribution that is categorised into levels.
Evaluation measures when complete data is available
Description
Calculates measures of comparison based on distances between two configurations in two dimensions.
Usage
evalMeas(missbp, compdat = NULL)
Arguments
missbp |
An object of class |
compdat |
Complete data matrix representing the input data of |
Value
The missbp
object is appended with the following objects:
eval |
Returns a data table with five evaluation measures: Procrustes Statistic (PS), Similarity Proportion (SP), Response Profile Recovery (RPR), Absolute Mean Bias (AMB), Root Mean Squared Bias (RMSB) |
GPApred |
A dataframe representing predicted categorical responses from the GPAbin biplot. |
compPred |
A dataframe representing predicted categorical responses from the complete MCA biplot. |
compZs |
Sample coordinates for the MCA biplot of the complete data. |
compCLPs |
CLPs for the MCA biplot of the complete data. |
complvls |
Names of the CLPs for the MCA biplot of the complete data. |
See also missmi
, impute
, DRT
and GPAbin
.
For more detail, refer to Nienkemper-Swanepoel, J., le Roux, N. J., & Gardner-Lubbe, S. (2021). GPAbin: unifying visualizations of multiple imputations for missing values. Communications in Statistics - Simulation and Computation, 52(6), 2666–2685. https://doi.org/10.1080/03610918.2021.1914089.
Examples
data(compdat)
data(implist)
missbp <- missmi(implist) |> DRT() |> GPAbin() |> evalMeas(compdat=compdat)
List of multiple imputed data sets
Description
Five multiple imputations of missdat
Format
List containing five multiple imputations of missdat
. Each list item a data frame with 1000 rows and 5 columns.
Details
- V1
Variable 1
- V1
Variable 2
- V1
Variable 3
- V1
Variable 4
- V1
Variable 5
Source
simulated example data imputed with mice::mice(missdat, m=5, method="polyreg", maxit=10, remove.collinear=FALSE, printFlag = FALSE)
Multiple imputation
Description
Choose between four available multiple imputation strategies in R
.
Usage
impute(missbp, imp.method = c("MIMCA", "jomo", "DPMPM", "mice"), m = 5)
Arguments
missbp |
An object of class |
imp.method |
Select one of four imputation methods: |
m |
Number of multiple imputations |
Value
The missbp
object is appended with the following object:
dataimp |
List of imputed data |
See also MIMCA
, jomo1cat
and mi
and mice
.
Examples
data(missdat)
missbp <- missmi(missdat) |> impute(imp.method="DPMPM", m=5)
Missing data example
Description
compdat
containing approximately 35% simulated missing values according to a missing at random (MAR) missing data mechanism
Format
A data frame with 1000 rows and 5 columns.
Details
- V1
Variable 1
- V1
Variable 2
- V1
Variable 3
- V1
Variable 4
- V1
Variable 5
Source
Simulated data from a uniform distribution that is categorised into levels.
First step before constructing unified biplots
Description
This function produces a list of elements to be used when producing a GPAbin biplot.
Usage
missmi(data)
Arguments
data |
input data frame or list |
Value
X |
The processed data |
m |
Number of multiple imputations applied |
n |
The number of samples |
p |
The number of variables |
miss_pct |
Percentage of missing values |
Examples
data(missdat)
missbp <- missmi(missdat)
data(implist)
missbp <- missmi(implist)
Generic print function for objects of class missmi
Description
This function is used to print output when the missmi biplot object is created.
Usage
## S3 method for class 'missmi'
print(x, ...)
Arguments
x |
an object of class |
... |
additional arguments. |
Value
This function will not produce a return value, it is called for side effects.
Examples
data(missdat)
missbp <- missmi(missdat)
data(implist)
missbp <- missmi(implist)
print(missbp)