Package 'IBDInfer'

April 17, 2025

Type Package

Title Design-Based Causal Inference Method for Incomplete Block Designs

Version 0.0.1

Description

This R package implements methods for estimation and inference under Incomplete Block Designs and Balanced Incomplete Block Designs within a design-based finite-population framework. Based on 'Koo and Pashley' (2024) <arXiv:2405.19312>, it includes block-level estimators and extends to unit-level effects using 'Horvitz-Thompson' and 'Hájek' estimators. The package also provides asymptotic confidence intervals to support valid statistical inference.

License MIT + file LICENSE

Encoding UTF-8

RoxygenNote 7.3.2

Imports crossdes, dplyr, tidyr

URL https://github.com/taehyeonkoo/IBDInfer

NeedsCompilation no

Author Taehyeon Koo [aut, cre], Nicole Pashley [ctb]

Maintainer Taehyeon Koo <tk587@stat.rutgers.edu>

Repository CRAN

Date/Publication 2025-04-17 00:10:07 UTC

Contents

IBDgen	 	 	 	2
IBDInfer	 	 	 	3

5

Index

Description

Generate incomplete block designs.

Usage

IBDgen(K, n.trt, t, n.vec = NULL, L = NULL, l = NULL, W = NULL, balanced = T)

Arguments

К	The number of blocks.
n.trt	The number of whole treatments.
t	The number of treatments to be assigned to each block.
n.vec	The vector of block sizes.
L	The vector of the number of blocks having each treatment.
1	The matrix of the number of blocks having each pair of treatments.
W	The set of treatment subsets used in the design.
balanced	Whether the design is balanced or not. If TRUE, generate a balanced design.

Value

A list containing the following components:

W	The set of treatment subsets used in the design.
W.uniq	The unique set of treatment subsets used in the design with proportion in $\ensuremath{\mathbb{W}}.$
Rk	The block assignment matrix.
blk_assign	The block assignment data frame.

References

Sailer, M. O., & Bornkamp, M. B. (2022). Package 'crossdes': Construction of Crossover Designs.

Examples

```
K <- 6
n.trt <- 3
t <- 2
n.vec <- rep(4, K)
IBDgen(K = K, n.trt = n.trt, t = t, n.vec = n.vec)</pre>
```

IBDInfer

Description

Conduct the design-based inference for incomplete block designs.

Usage

IBDInfer(y, b, z, g, w = c("Unit", "Block"), alpha = 0.05, data = NULL)

Arguments

У	Observed outcomes.
b	Block identifier (ID).
z	Assigned treatments.
g	A contrast vector, must sum to zero.
W	A weight vector, must sum to one and contain non-negative values.
alpha	Confidence level, default set to 0.05.
data	A data frame; if provided, y, b, and z should be column names in the data frame.

Value

IBDInfer returns an object of class "IBD", which is a list containing the following components: :

tau.ht	The Horvitz-Thompson estimator of tau.
tau.haj	The Hajek estimator of tau.
var_tau_ht_bb	Variance estimator for the Horvitz-Thompson estimator with between-block bias.
var_tau_ht_wb	Variance estimator for the Horvitz-Thompson estimator with within-block bias.
var_tau_haj_bb	Variance estimator for the Hajek estimator with between-block bias.
var_tau_haj_wb	Variance estimator for the Hajek estimator with within-block bias.
CI_ht_bb	Confidence interval with the Horvitz-Thompson estimator and variance estimator with between-block bias.
CI_ht_wb	Confidence interval with the Horvitz-Thompson estimator and variance estimator with within-block bias.
CI_haj_bb	Confidence interval with the Hajek estimator and variance estimator with between- block bias.
CI_haj_wb	Confidence interval with the Hajek estimator and variance estimator with within- block bias.
yht	The Horvitz-Thompson estimator for each treatment.
yhaj	The Hajek estimator for each treatment.

Sht_bb	Covariance estimator for the Horvitz-Thompson estimator for each treatment with between-block bias.
Sht_wb	Covariance estimator for the Horvitz-Thompson estimator for each treatment with within-block bias.
Shaj_bb	Covariance estimator for the Hajek estimator for each treatment with between- block bias.
Shaj_wb	Covariance estimator for the Hajek estimator for each treatment with within- block bias.
alpha	Confidence level

References

Koo, T., Pashley, N.E. (2024), Design-based Causal Inference for Incomplete Block Designs, *arXiv* preprint arXiv:2405.19312.

Examples

```
K <- 6
n.trt <- 3
t <- 2
n.vec <- rep(4, K)
df <- IBDgen(K = K, n.trt = n.trt, t = t, n.vec = n.vec)$blk_assign
df$y <- rnorm(nrow(df), 0, 1)
IBDInfer <- IBDInfer(y = y, b = blk_id, z = assign, g = c(1, -1, 0), w = "Block", data = df)</pre>
```

Index

IBDgen, 2 IBDInfer, 3