
The tqft TikZ Library: Documentation
Andrew Stacey

loopspace@mathforge.org

v2.2 from 2024/05/31

1 Introduction
This package defines some TikZ/PGF picture shapes that can be used to construct
the diagrams common in Topological Quantum Field Theory (TQFT). An example
follows:

\ begin { t i k z p i c t u r e } [t q f t / cobordism / . s t y l e={draw }]
\ p i c [t q f t / pa i r o f pants , name=a] ;
\ p i c [t q f t / c y l i n d e r to next , anchor=incoming boundary

1 ,name=c , at=(a−outgoing boundary 1)] ;
\ p i c [t q f t / r e v e r s e pa i r o f pants , anchor=incoming

boundary 1 , at=(a−outgoing boundary 2)] ;
\end{ t i k z p i c t u r e }

2 Contents
1 Introduction 1

1

loopspace@mathforge.org

2 Contents 1

3 History 2

4 Keys 2

5 Version 2: Pics via a TikZ Library 3
5.1 The Shapes . 3
5.2 Styling . 5
5.3 Anchors . 8
5.4 Notes . 10
5.5 More Examples . 11

6 Version 1: Nodes via a Style File 16
6.1 The Node Shapes . 17
6.2 Styling . 19
6.3 Anchors . 20
6.4 Improvements . 22
6.5 More Examples . 23

3 History
This is the second version of the TQFT package. The first version used nodes to
draw the shapes. However, with the advent of TikZ3.0 came the ability to define
subdrawings called pics which were a bit like nodes but were geared more towards
drawings than containers for text. This seems a much more suitable mechanism
for drawing these diagrams and so the package has been rewritten to make use of
this new facility.

The second version is designed to be similar to the first, but with some improve-
ments. The original version was distributed as a .sty file and so is loaded using
\usepackage{tqft}. The newer version is a TikZ library and so is loaded using
\usetikzlibrary{tqft}. This makes it possible to use both in the same docu-
ment. This is not recommended, but an attempt has been made to make it possible
to switch between the two methods (mainly to stop this documentation file com-
plaining every time I compile it). This hasn’t been extensively tested so use with
caution. To make the switch use the key /tikz/tqft/use nodes=<true|false>.
By default, the one loaded last should be in effect at the start of the document.

4 Keys
Before giving any details, a word is in order about the keys involved in this package.
There are many options and keys that can be set via the \pgfkeys system (which is
used for setting options in TikZ). Such keys live in a “directory” but often that can
be omitted. For example, in the TikZ command \draw[red] (0,0) -- (1,0);
the key red is actually in the “directory” /tikz but it is not necessary to specify
that as it is assumed. Defining a “directory” helps separate keys and ensure that
there is no conflict. The keys in this library are (mostly) defined in the directories
/tikz/tqft (the newer version) and /pgf/tqft (the old version).

2

Invoking /tikz/tqft itself sets the “current directory” to whichever directory
is right for the current version in force and so all subsequent keys do not need
prefixing. Moreover, any unknown keys are passed on to the /tikz directory
so there is (or should be!) no harm in mixing tqft specific keys with ordinary
TikZ keys. Some examples take advantage of this switch so when copying and
modifying examples from this document, it is important to remember that the
first tqft specific key needs an explicit tqft/ prefix.

5 Version 2: Pics via a TikZ Library
5.1 The Shapes
There is only one picture shape: cobordism. This is a cobordism between a
number of incoming circles and a number of outgoing circles, where the numbers
of boundary components can be specified as options to the shape. There are
certain common shapes that are predefined as aliases to the main shape with
specified boundaries. The list of predefined shapes follows. The names are all in
the tqft family, but an alias is made so that tqft <shape> will work without any
further qualification.

1. pair of pants

2. reverse pair of pants

3. cylinder to prior

This is a cylinder that has been skewed to one side, thus following the same
path as the pair of pants cobordism but with only one outgoing bound-
ary component. The name to prior is because it goes towards the lower-
numbered component on the pair of pants.

4. cylinder to next

3

This is a cylinder that has been skewed to one side, thus following the same
path as the pair of pants cobordism but with only one outgoing bound-
ary component. The name to next is because it goes towards the higher-
numbered component on the pair of pants.

5. cylinder

This is a straight cylinder.

6. cap

This is a cap.

7. cup

This is a cup (an upside-down cap).

The general shape is controlled by the following keys:

• To get a simulated 3D effect, the cobordism is drawn as if viewed from a slightview from
angle. The value of this key determines whether the cobordism is viewed
from the direction of the incoming boundary components or the outgoing
ones. This key can take the values incoming and outgoing. The default is
outgoing.

• This is the height of the cobordism (“height” interpreted in its own internalcobordism height
coordinate system). With no offset (q.v.), this would be the distance between
the centres of the first incoming and first outgoing boundary components.

• This is the distance between the centres of the boundary components of theboundary separation
same type.

• This is the half-width of the boundary circles.circle x radius

• This is the half-depth of the boundary circles (“depth” since, in the internalcircle y radius
coordinate system, this corresponds to the z-axis out of the page).

• The number of incoming boundary components (can be zero).incoming boundary
components

4

• A list of incoming boundary components to be skipped.skip incoming boundary
components • The number of outgoing boundary components (can be zero).outgoing boundary
components

• A list of outgoing boundary components to be skipped.skip outgoing boundary
components • This offsets the first outgoing boundary component horizontally relative tooffset

the first incoming boundary component. It is a dimensionless number (not
necessarily an integer) and is interpreted so that a value of 1 aligns the first
outgoing boundary component with the second incoming boundary compo-
nent.

• This defines the number of holes in the shape. These are spread out in agenus
horizontal line in the middle of the shape.

• This is a boolean that, if set, makes the cobordism twisted in that the edgestwisted
cross as they pass from the incoming to outgoing boundaries. This probably
won’t look good with a non-zero genus, but there’s nothing stopping you
doing it.

5.2 Styling
There are various options for styling the diagrams. To understand how they work,
it is important to know the order in which a cobordism is drawn and how many
pieces it decomposes into. This is the following list, with the corresponding keys:

1. The boundary circles are drawn. These are actually elliptical nodes (and
thus can be individually styled). Applicable styles:

• every boundary component,
• every incoming boundary component,

or every outgoing boundary component,
• incoming boundary component <n>,

or outgoing boundary component <n>

2. The lower edges of the boundary circles are redrawn. These are individual
arcs.

• every lower boundary component,
• every incoming lower boundary component,

or every outgoing lower boundary component,
• incoming lower boundary component <n>,

or outgoing lower boundary component <n>

3. The full edge of the cobordism is drawn. This is a closed path so can be
sensibly filled. It is clipped against a path defined by the genus of the
cobordism which results in holes if it is filled (or shaded or anything else
that goes in to the interior).

• cobordism,

5

• also, any actions specified on the pic are applied here (specifically, the
pic actions key is invoked; see the TikZ manual for full details on
this),

• cobordism outer path.

4. Any holes specified by the genus are now drawn. These are styled to give
the 3D impression, and this follows the direction specified by the view from
key. The paths are split so that each can be individually styled.

• cobordism, this style is applied because the curves defined by the genus
can be thought of as part of the edge of the cobordism shape.

• pic actions, for the same reason as above.
However, following this key then fill=none,shade=none is issued.
This is because even if the main shape is filled or shaded, the paths
drawing the holes should almost certainly not be.

• cobordism edge, the same logic applies to the edge path (q.v.).
• genus style,
• genus upper or genus lower,
• hole <n>,
• hole <n> upper or hole <n> lower.

5. The non-boundary edge of the cobordism is redrawn. This is split in to
pieces to allow for individual styling.

• cobordism edge,
• cobordism outer edge,
• between incoming, or between outgoing, or between incoming and outgoing.

The latter is for the two sides, but note that if the cobordism has no
incoming or no outgoing components then it also applies to the “over
the top” edge.

• <anchor>, where the <anchor> is the name of the anchor that lies on
the midpoint of the curve, so it will be one of:

– between incoming <n> and <n+1>,
– between outgoing <n> and <n+1>,
– between first incoming and first outgoing,
– between last incoming and last outgoing,
– between first and last incoming,
– between first and last outgoing.

6. The upper edges of the boundary circles are redrawn. These are arcs.

• every upper boundary component,
• every incoming upper boundary component,

or every outgoing upper boundary component,
• incoming upper boundary component <n>,

or outgoing upper boundary component <n>

6

The fact that there are so many is to allow different style to be applied to
different pieces and to give as much control as possible, whilst still making it
fairly straightforward to draw a simple cobordism. The duplication of paths is
to allow certain composite pieces to be filled. Here is a progressively built up
cobordism.

\ begin { t i k z p i c t u r e } [t q f t /view from=incoming]
\ begin { scope } [t q f t / every boundary

component / . s t y l e={ f i l l =green , f i l l opac i ty =1}]
\ p i c [t q f t / cy l inde r , at ={(1 ,0) }] ;
\ begin { scope } [t q f t / every lower boundary

component / . s t y l e={draw=purple , th i ck }]
\ p i c [t q f t / cy l inde r , at ={(2 ,0) }] ;
\ begin { scope } [t q f t / cobordism / . s t y l e={ f i l l =yel low , f i l l

opac i ty =.7}]
\ p i c [t q f t / cy l inde r , at ={(3 ,0) }] ;
\ begin { scope } [t q f t / cobordism

edge / . s t y l e={draw , th ick , b lue }]
\ p i c [t q f t / cy l inde r , f i l l =yel low , f i l l

opac i ty =.7 , at ={(4 ,0) }] ;
\ begin { scope } [t q f t / every upper boundary

component / . s t y l e={draw , th ick , orange }]
\ p i c [t q f t / cy l inde r , f i l l =yel low , f i l l

opac i ty =.7 , at ={(5 ,0) }] ;
\end{ scope }
\end{ scope }
\end{ scope }
\end{ scope }
\end{ scope }
\end{ t i k z p i c t u r e }

Here’s an example with lots of styling.

7

\ begin { t i k z p i c t u r e }
\ p i c [

tq f t ,
incoming boundary components=3,
outgoing boundary components=3,
o f f s e t =1,
genus =3,
ho le 3/ . s t y l e={u l t r a th ick , purple , s o l i d } ,
genus lower / . s t y l e={dashed } ,
f i l l =red ! 5 0 ,
cobordism edge / . s t y l e={draw } ,
between incoming and outgoing / . s t y l e={dotted } ,
between outgoing 2 and 3/ . s t y l e={u l t r a th i ck } ,

] ;
\end{ t i k z p i c t u r e }

5.3 Anchors
The cobordism is a pic so does not have any native anchors. Nevertheless, a
multitude of coordinates are defined that simulate the anchors associated with
nodes. There is also support for specifying the shape to be located relative to a
particular anchor.

The \pic should be named via the name=<prefix> key, whereupon the anchors
are prefixed by this value. The pseudo-anchors defined have the naming convention
<prefix>-<anchor name> (at the moment, it doesn’t check to see if the name key
has been specified so if it isn’t then the pseudo-anchors are still defined but with
an empty prefix). They are:

• incoming boundary <n>, these are in fact elliptical nodes and so also define
actual anchors.

• incoming boundary is an alias for incoming boundary 1.

• outgoing boundary <n>, same.

• outgoing boundary is an alias for outgoing boundary 1.

• between incoming <n> and <n+1>, this lies on the midpoint of the curve
between successive boundary components.

• between outgoing <n> and <n+1>, this lies on the midpoint of the curve
between successive boundary components.

• between first incoming and first outgoing is on the edge between the
first incoming and first outgoing boundary components; note that this is only
defined if there are both incoming and outgoing boundary components.

8

• between last incoming and last outgoing is on the edge between the
last incoming and last outgoing boundary components; note that this is
only defined if there are both incoming and outgoing boundary components.

• between first and last incoming; this is only defined if there are no
outgoing components.
This is also available via the alias between first incoming and last incoming.

• between first and last outgoing; this is only defined if there are no
incoming components.
This is also available via the alias between first outgoing and last outgoing.

• hole <n>; if the genus is non-zero, this points to the centre of the nth hole.

To place the shape relative to an anchor, use the tqft/anchor key. The
argument should be just the name of the anchor without the leading <prefix>-.
The anchor key can also take another type of argument. If its argument is of the
form (x,y) then this is taken as a pseudo-coordinate1. It is interpreted as being
x boundary components across and y times the cobordism height down. However,
if an offset is specified then the resulting x value is shifted so that if y < 0 then
(1, y) is in line with the first incoming boundary component and if y > 1 then
(1, y) is in line with the first outgoing boundary component. If 0 < y < 1 then
(1, y) linearly interpolates between the first incoming and first outgoing boundary
components. Thus (1, 0) is the first incoming boundary component, (1, 1) the first
outgoing boundary component, (0, 0) is one unit to the left of the first incoming,
and (1, 2) one unit below the first outgoing. Note that the picture is shifted to
put this point at the current coordinate.

\ begin { t i k z p i c t u r e }
\ p i c [tq f t , incoming boundary components=2, outgoing

boundary components=4, o f f s e t =−1,draw , name=a] ;
\ f o r each \ anchor /\ placement in
{
between f i r s t incoming and f i r s t outgoing / l e f t ,
between l a s t incoming and l a s t outgoing / r ight ,
between outgoing 2 and 3/above ,
incoming boundary 1/ above l e f t ,
incoming boundary 2/ above r ight ,
outgoing boundary 1/ below l e f t ,
outgoing boundary 4/ below r i g h t }
\draw [over lay , s h i f t =(a−\anchor)] p l o t [mark=x]

c o o r d i n a t e s { (0 , 0) } node [\ placement]
{\ s c r i p t s i z e \ t e x t t t {(a−\anchor) }} ;

\path (a−incoming boundary) +(0 , .5) (a−outgoing
boundary) +(0 ,−1) ;

\end{ t i k z p i c t u r e }

1Note that due to the presence of the comma, this type of argument must be protected by
braces.

9

(a-between first incoming and first outgoing) (a-between last incoming and last outgoing)
(a-between outgoing 2 and 3)

(a-incoming boundary 1) (a-incoming boundary 2)

(a-outgoing boundary 1) (a-outgoing boundary 4)

5.4 Notes
1. Like nodes, pics need the transform shape key to be set to take note

of external transformations (other than shifts). The tqft pic uses nodes
internally and those nodes have transform shape automatically set so this
should just work.

2. There is an additional every tqft key which is run when the tqft key is
invoked (which might be via some other key). This is better placed than the
every pic key since that applies to a surrounding scope rather than to the
pic itself.

3. If the tqft key is invoked, either implicitly or explicitly, then the pic type
is set to cobordism. This has the side effect that the invoking syntax has to
be completely set by keys; so the pic (<name>) at (<coord>) {<type>}
cannot be used. Rather, the name and at have to be specified by keys and
the type omitted.

4. If upgrading from the previous version of TQFT, as well as shifting from a
node to a pic, the following changes have been made in the implementation:

• The flow key has not made it across to the new version. Use
transform shape and apply your own transformation.

• The circle width and circle depth are now circle x radius and
circle y radius (the old names weren’t correct anyway).

• The bounding box is a little better, particularly for cobordisms with
only one type of boundary component.

10

5.5 More Examples

\ begin { t i k z p i c t u r e } [t q f t / cobordism
he ight =1.5cm, t q f t /boundary s epa ra t i on =1.5cm]

\ fo r each \ coord /\ s t y l e in {
{(0 ,0) }/{ t q f t /view from=outgoing , f i l l } ,
{ (5 , 0) }/{ t q f t /view from=incoming , draw } ,
{(0 , −8) }/{ f i l l =orange , f i l l opac i ty =.5 , t q f t / every lower

boundary component / . s t y l e={draw , blue , u l t r a
thin , dashed } , t q f t / every upper boundary
component / . s t y l e={draw , green } , t q f t / cobordism
edge / . s t y l e={draw , purple } , t q f t / every boundary
component / . s t y l e={ f i l l =ye l low }} ,

{(5 , −8) }/{ f i l l =orange , f i l l opac i ty =.5 , t q f t / cobordism
edge / . s t y l e={draw , purple } , t q f t / every boundary
component / . s t y l e={ f i l l =yel low , draw=green }}

} {
\ begin { scope } [every t q f t / . s t y l e / . expand once=\s t y l e]

\ p i c [t q f t /cap , name=h , at=\coord] ;
\ p i c [t q f t / pa i r o f pants , anchor=incoming boundary

1 ,name=a , at=(h−outgoing boundary 1)] ;
\ p i c [t q f t / c y l i n d e r to

next , anchor ={(0 ,1) } ,name=d , at=(a−outgoing boundary
2)] ;

\ p i c [t q f t / r e v e r s e pa i r o f pants , anchor=incoming boundary
1 ,name=b , at=(a−outgoing boundary 2)] ;

\ p i c [t q f t / c y l i n d e r to pr io r , anchor=incoming boundary
1 ,name=c , at=(b−outgoing boundary 1)] ;

\ p i c [t q f t / cy l inde r , twisted , anchor=incoming boundary
1 ,name=e , at=(a−outgoing boundary 1)] ;

\ p i c [t q f t / cy l inde r , anchor=incoming boundary
1 ,name=f , at=(e−outgoing boundary 1)] ;

\ p i c [t q f t / r e v e r s e pa i r o f pants , anchor=incoming boundary
1 ,name=g , at=(f−outgoing boundary 1)] ;

\ p i c [t q f t /cup , anchor=incoming boundary
1 ,name=i , at=(g−outgoing boundary 1)] ;

\end{ scope }
}
\end{ t i k z p i c t u r e }

11

12

\ begin { t i k z p i c t u r e } [every t q f t / . append s t y l e={trans form
shape }]

\ f o r each \ang in {0 ,90 ,180 ,270} {
\ begin { scope } [r o t a t e=\ang]
\ p i c [draw , t q f t / pa i r o f pants , name=a , at ={(3 ,3) }] ;
\ p i c [draw , t q f t /cap , anchor=outgoing boundary

1 , at=(a−incoming boundary 1)] ;
\ p i c [f i l l , t q f t /cup , anchor=incoming boundary

1 , at=(a−outgoing boundary 1)] ;
\ p i c [draw , t q f t /cup , anchor=incoming boundary

1 , at=(a−outgoing boundary 2)] ;
\end{ scope }
}
\end{ t i k z p i c t u r e }

13

\ begin { t i k z p i c t u r e } [
tq f t ,
every outgoing boundary

component / . s t y l e={ f i l l =blue ! 50} ,
outgoing boundary component

3/ . s t y l e={ f i l l =none , draw=red } ,
every incoming boundary

component / . s t y l e={ f i l l =green ! 50} ,
every lower boundary component / . s t y l e={draw , u l t r a

th ick , dashed } ,
every upper boundary component / . s t y l e={draw , purple } ,
cobordism / . s t y l e={ f i l l =red ! 50} ,
cobordism edge / . s t y l e={draw } ,
genus =3,
ho le 2/ . s t y l e={u l t r a th ick , b lue } ,
view from=incoming ,
anchor=between incoming 1 and 2

]
\ p i c [r o t a t e =90,

%every node / . s t y l e ={transform shape } ,
name=a , tq f t , incoming boundary components=5, sk ip

incoming boundary components ={2 ,4} , outgoing
boundary components=7, sk ip outgoing boundary
components ={2 ,3 ,5} , o f f s e t = − .5];

\ begin { scope } [every pin edge / . s t y l e ={<−}]
\ f o r each \ anchor /\ang in {

ho le 1/−90 ,
ho l e 2/90 ,
ho l e 3/−90 ,
incoming boundary 3/180 ,
outgoing boundary 4/0 ,
between l a s t incoming and l a s t outgoing /90 ,
between f i r s t incoming and f i r s t outgoing /−90,
between incoming 1 and 3/180 ,
between outgoing 1 and 4/0 ,
between outgoing 4 and 6/0

} {
\node [pin=\ang : \ anchor , at=(a−\anchor) , inner sep=0pt]

{} ;
}
\draw[<−] (0 , 0) −− ++(−2,0) node [l e f t] { o r i g i n } ;
\end{ scope }
\end{ t i k z p i c t u r e }

14

hole 1

hole 2

hole 3

incoming boundary 3

outgoing boundary 4

between last incoming and last outgoing

between first incoming and first outgoing

between incoming 1 and 3 between outgoing 1 and 4

between outgoing 4 and 6

origin

15

=

6 Version 1: Nodes via a Style File
As mentioned in the introduction, this is the original method of drawing cobordism
diagrams using nodes and is no longer updated (though I will fix bugs if I can). If

16

drawing a new diagram, use the pic method from Section 5.

6.1 The Node Shapes
There are only two shapes, tqft cobordism and tqft boundary circle. The
first, which is the main shape, is a cobordism between a number of incoming circles
and a number of outgoing circles, where the numbers of boundary components can
be specified as options to the shape. The second is just the boundary circle. It
is used as a sub-node of the first to add extra anchors, but can be used by itself.
There are certain common shapes that are predefined as aliases to the main shape
with specified boundaries. The list of predefined shapes follows. The names are
all in the tqft family, but an alias is made so that tqft nodeshape will work
without any further qualification.

1. pair of pants

2. reverse pair of pants

3. cylinder to prior

This is a cylinder that has been skewed to one side, thus following the same
path as the pair of pants cobordism but with only one outgoing bound-
ary component. The name to prior is because it goes towards the lower-
numbered component on the pair of pants.

4. cylinder to next

This is a cylinder that has been skewed to one side, thus following the same
path as the pair of pants cobordism but with only one outgoing bound-
ary component. The name to next is because it goes towards the higher-
numbered component on the pair of pants.

17

5. cylinder

This is a straight cylinder.

6. cap

This is a cap.

7. cup

This is a cup (an upside-down cap).

The general shape is controlled by the following keys:

• A cobordism “flows” from its incoming to its outgoing boundaries. Thisflow
key controls the direction of that flow. The shape is transformed so that
the incoming-outgoing axis aligns with the argument. However, the trans-
formation may be more than just a rotation as the shape is set up so that
the numbering of the boundary components is always left-to-right or top-
to-bottom (as appropriate). Currently, this key can take the values north,
south (default), east, and west.

• To get a simulated 3D effect, the cobordism is drawn as if viewed from a slightview from
angle. The value of this key determines whether the cobordism is viewed
from the direction of the incoming boundary components or the outgoing
ones. This key can take the values incoming and outgoing. The default is
outgoing.

• This is the height of the cobordism (“height” interpreted in its own internalcobordism height
coordinate system). With no offset (q.v.), this would be the distance between
the centres of the first incoming and first outgoing boundary components.

• This is the distance between the centres of the boundary components of theboundary separation
same type.

18

• This is the half-width of the boundary circles.circle width

• This is the half-depth of the boundary circles (“depth” since, in the internalcircle depth
coordinate system, this corresponds to the z-axis out of the page).

• The number of incoming boundary components (can be zero).incoming boundary
components

• The number of outgoing boundary components (can be zero).outgoing boundary
components • This offsets the first outgoing boundary component horizontally relative tooffset

the first incoming boundary component. It is a dimensionless number (not
necessarily an integer) and is interpreted so that a value of 1 aligns the first
outgoing boundary component with the second incoming boundary compo-
nent.

6.2 Styling
There are various options for styling the diagrams. To understand how they work,
it is important to know the order in which a cobordism is drawn and how many
pieces it decomposes into. This is the following list, with the corresponding key:

1. The boundary circles are drawn. boundary style

2. The lower edges of the boundary circles are redrawn. boundary lower style

3. The cobordism itself is drawn.

4. The non-boundary edge of the cobordism is redrawn. cobordism style

5. The upper edges of the boundary circles are redrawn. boundary upper style

The fact that there are so many is to allow different style to be applied to
different pieces. The duplication is to allow certain composite pieces to be filled.
All of these items can be styled separately. The style given to the node itself is
passed on to the third item in that list, the cobordism itself. The styles of the
others are controlled by a series of keys, each of should be a list of styles to be
applied to that component. Not all options make sense, in particular only the
first and third can be filled. (That is, the fill style is ignored on the other
components.) Here is a progressively built up cobordism.

19

\ begin { t i k z p i c t u r e }
\ begin { scope } [t q f t /boundary s t y l e={ f i l l =purple , f i l l

opac i ty =1}]
\node [t q f t / c y l i n d e r] at (1 , 0) {} ;
\ begin { scope } [t q f t /boundary lower

s t y l e={draw , dashed , green , th i ck }]
\node [t q f t / c y l i n d e r] at (2 , 0) {} ;
\ begin { scope }
\node [t q f t / cy l inde r , f i l l =yel low , f i l l opac i ty =.7] at

(3 , 0) {} ;
\ begin { scope } [t q f t / cobordism s t y l e={draw , th ick , b lue }]
\node [t q f t / cy l inde r , f i l l =yel low , f i l l opac i ty =.7] at

(4 , 0) {} ;
\ begin { scope } [t q f t /boundary upper

s t y l e={draw , th ick , orange }]
\node [t q f t / cy l inde r , f i l l =yel low , f i l l opac i ty =.7] at

(5 , 0) {} ;
\end{ scope }
\end{ scope }
\end{ scope }
\end{ scope }
\end{ scope }
\end{ t i k z p i c t u r e }

6.3 Anchors
As with all PGF node shapes, there are certain anchors defined by the tqft shape.
These are the center (and centre) anchors and the incoming boundary n,
outgoing boundary n anchors. The positioning of the center anchor is slightly
unusual in that if there are no, say, incoming boundary components then the cen-
tre anchor is still at the same height above the outgoing boundary components
as if there were incoming boundary components. The reason for this is two-fold:
computing the actual centre of the shape in such circumstances would be tricky,
and when aligning these shapes it is more useful to have the anchors consistent
across shapes of varying boundary components.

There are also the directional anchors north, south, east, west, north east,
north west, south east, south west. The east and west anchors are placed
at the midpoints of the sides. The north and south anchors are placed in a
vertical line with the center anchor and vertically aligned with the centres of
the corresponding boundary circles. The other four directional anchors are placed
at the corners of the cobordism (the placement of these anchors in the case that
there are no boundary circles in the corresponding direction may change in future
versions).

The incoming boundary n and outgoing boundary n are placed at the cen-

20

tres of the corresponding boundary components, with the numbering starting at
the left or the top as appropriate to the flow of the cobordism. A hack borrowed
from the regular polygon shape ensures that there are always enough anchors
for the boundary components.

There are also anchors placed at the midpoint of the cobordism edge between
the boundary circles. The names of these are after incoming boundary n and
after outgoing boundary n.

The above anchors can all be “floated” off the cobordism using the keys
outer sep, outer xsep, and outer ysep. The last two are the ones actually
used, the first is a shortcut for setting both simultaneously.

There are also “sub-nodes”. Provding the main node is named, each bound-
ary circle is covered by a tqft boundary circle node. This means that the
anchors of the tqft boundary circle can be used. These cannot be used for
placing the main shape, but can be used afterwards. These are not affected
by the outer (x/y)sep keys. The names of these sub-nodes are of the form
name incoming n and name outgoing n where name is the name of the main
node. The tqft boundary circle shape is based on an ellipse and defines a
boundary so the syntax (name.angle) works as expected. It also defines anchors
next, prior, above, and below. These correspond to where the boundary circle
in the prescribed direction should be placed.

\ begin { t i k z p i c t u r e }
\node [tq f t , incoming boundary components=2, outgoing

boundary components=4, o f f s e t =−1,draw] (a) {} ;
\ f o r each \ anchor /\ placement in
{
north /above ,
south /below ,
ea s t / r ight ,
west / l e f t ,
north west / l e f t ,
south west / l e f t ,
north ea s t / r ight ,
south ea s t / r ight ,
incoming boundary 1/ above l e f t ,
incoming boundary 2/ above r ight ,
outgoing boundary 1/ below l e f t ,
outgoing boundary 4/ below r ight ,
a f t e r outgoing boundary 1/ below}
\draw [s h i f t =(a . \ anchor)] p l o t [mark=x] c o o r d i n a t e s { (0 ,0) }

node [\ placement] {\ s c r i p t s i z e \ t e x t t t {(a . \ anchor) }} ;
\end{ t i k z p i c t u r e }

(a.north)

(a.south)

(a.east)(a.west)

(a.north west)

(a.south west)

(a.north east)

(a.south east)

(a.incoming boundary 1) (a.incoming boundary 2)

(a.outgoing boundary 1) (a.outgoing boundary 4)

(a.after outgoing boundary 1)

21

\ begin { t i k z p i c t u r e }
\node [tq f t , cy l i nde r , c i r c l e width=2cm, c i r c l e depth=1cm,

cobordism he ight=4cm, boundary s epa ra t i on=3cm, draw]
(b) {} ;

\ f o r each \ anchor /\ placement in
{
p r i o r / l e f t ,
next / r ight ,
above/above ,
below/below ,
0/ r ight ,
60/ r ight ,
200/ l e f t }
\draw [s h i f t =(b incoming 1 .\ anchor)] p l o t [mark=x]

c o o r d i n a t e s { (0 , 0) } node [\ placement]
{\ s c r i p t s i z e \ t e x t t t {(b incoming 1 .\ anchor) }} ;

\end{ t i k z p i c t u r e }

(b incoming 1.prior) (b incoming 1.next)

(b incoming 1.above)

(b incoming 1.below)

(b incoming 1.0)

(b incoming 1.60)

(b incoming 1.200)

6.4 Improvements
Here are some ideas for extending this, and some minor “bugs”.

1. Make incoming boundary an alias of incoming boundary 1 so that if there
is only one incoming boundary component then we don’t need to specify the
number (ditto outgoing).

2. No thought has been given as to where the text gets placed if it is specified.

22

3. Add the ability to hide certain boundary components. This is useful if the
shapes are not specified in their natural order so certain boundary compo-
nents should be hidden behind earlier drawn shapes.

4. Some style options on the main node get passed to the other pieces
(fill opacity being one). This shouldn’t happen, or should happen by
design not by accident.

5. The bounding box isn’t as good as it could be.

6. Add a way to specify more directions for the flow.

7. Add the ability to apply different styles to the incoming and outgoing com-
ponents.

6.5 More Examples

\ begin { t i k z p i c t u r e } [t q f t / cobordism
he ight =1.5cm, t q f t /boundary s epa ra t i on =1.5cm]

\ fo r each \ coord /\ s t y l e in {
{(0 ,0) }/{ t q f t /view from=outgoing , f i l l } ,
{ (5 , 0) }/{ t q f t /view from=incoming , draw } ,
{(0 , −8) }/{ f i l l =orange , f i l l opac i ty =.5 , t q f t /boundary

lower s t y l e={draw , blue , u l t r a
thin , dashed } , t q f t /boundary upper
s t y l e={draw , green } , t q f t / cobordism
s t y l e={draw , purple } , t q f t /boundary
s t y l e={ f i l l =ye l low }} ,

{(5 , −8) }/{ f i l l =orange , f i l l opac i ty =.5 , t q f t / cobordism
s t y l e={draw , purple } , t q f t /boundary
s t y l e={ f i l l =yel low , draw=green }}

} {
\ begin { scope } [every node / . s t y l e / . expand once=\s t y l e]
\node [t q f t /cap] (h) at \ coord {} ;
\node [t q f t / pa i r o f pants , anchor=incoming boundary 1] (a)

at (h . outgoing boundary 1) {} ;
\node [t q f t / c y l i n d e r to next , anchor=incoming boundary 1]

(d) at (a . incoming boundary 2) {} ;
\node [t q f t / r e v e r s e pa i r o f pants , anchor=incoming

boundary 1] (b) at (a . outgoing boundary 2) {} ;
\node [t q f t / c y l i n d e r to pr io r , anchor=incoming boundary 1]

(c) at (b . outgoing boundary 1) {} ;
\node [t q f t / cy l inde r , anchor=incoming boundary 1] (e) at

(a . outgoing boundary 1) {} ;
\node [t q f t / cy l inde r , anchor=incoming boundary 1] (f) at

(e . outgoing boundary 1) {} ;
\node [t q f t / r e v e r s e pa i r o f pants , anchor=incoming

boundary 1] (g) at (f . outgoing boundary 1) {} ;
\node [t q f t /cup , anchor=incoming boundary 1] (i) at

(g . outgoing boundary 1) {} ;
\end{ scope }
}
\end{ t i k z p i c t u r e }

23

24

\ begin { t i k z p i c t u r e }
\node [draw , t q f t / pa i r o f pants] (a) {} ;
\node [draw , t q f t /cap , anchor=outgoing boundary 1] at

(a . incoming boundary 1) {} ;
\node [f i l l , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 1) {} ;
\node [draw , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 2) {} ;
\ begin { scope } [t q f t / f low=eas t]
\node [draw , t q f t / pa i r o f pants] (a) at (4 , 0) {} ;
\node [draw , t q f t /cap , anchor=outgoing boundary 1] at

(a . incoming boundary 1) {} ;
\node [f i l l , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 1) {} ;
\node [draw , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 2) {} ;
\end{ scope }
\ begin { scope } [t q f t / f low=north]
\node [draw , t q f t / pa i r o f pants] (a) at (0 , −4) {} ;
\node [draw , t q f t /cap , anchor=outgoing boundary 1] at

(a . incoming boundary 1) {} ;
\node [f i l l , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 1) {} ;
\node [draw , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 2) {} ;
\end{ scope }
\ begin { scope } [t q f t / f low=west]
\node [draw , t q f t / pa i r o f pants] (a) at (4 , −4) {} ;
\node [draw , t q f t /cap , anchor=outgoing boundary 1] at

(a . incoming boundary 1) {} ;
\node [f i l l , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 1) {} ;
\node [draw , t q f t /cup , anchor=incoming boundary 1] at

(a . outgoing boundary 2) {} ;
\end{ scope }
\end{ t i k z p i c t u r e }

25

26

	1 Introduction
	2 Contents
	3 History
	4 Keys
	5 Version 2: Pics via a TikZ Library
	5.1 The Shapes
	5.2 Styling
	5.3 Anchors
	5.4 Notes
	5.5 More Examples

	6 Version 1: Nodes via a Style File
	6.1 The Node Shapes
	6.2 Styling
	6.3 Anchors
	6.4 Improvements
	6.5 More Examples

