| .beta.MH.RW.glm | Beta MH RW sampler from freq PEM fit | 
| .beta_MH_MALA | Proposal beta with a Metropolis Adjusted Langevin (MALA) | 
| .beta_MH_NR | Newton Raphson MH move | 
| .beta_MH_RW | Beta Metropolis-Hastings random walk move | 
| .beta_mom | Mean for MALA using derivative for beta proposal | 
| .beta_mom.NR.fun | First and second derivative of target for mode and variance of proposal | 
| .birth_move | Birth move in RJMCMC | 
| .dataframe_fun | Create data.frame for piecewise exponential models | 
| .death_move | Death move in RJMCMC | 
| .glmFit | Fit frequentist piecewise exponential model for MLE and information matrix of beta | 
| .ICAR_calc | Calculate covariance matrix in the MVN-ICAR | 
| .input_check | Input checker | 
| .J_RJMCMC | RJMCMC (with Bayesian Borrowing) | 
| .J_RJMCMC_NoBorrow | RJMCMC (without Bayesian Borrowing) | 
| .lambda_0_MH_cp | Lambda_0 MH step, proposal from conditional conjugate posterior | 
| .lambda_0_MH_cp_NoBorrow | Lambda_0 MH step, proposal from conditional conjugate posterior | 
| .lambda_conj_prop | Propose lambda from a gamma conditional conjugate posterior proposal | 
| .lambda_MH_cp | Lambda MH step, proposal from conditional conjugate posterior | 
| .lgamma_ratio | Calculate log gamma ratio for two different parameter values | 
| .llikelihood_ratio_beta | Loglikelihood ratio calculation for beta parameters | 
| .llikelihood_ratio_lambda | Log likelihood for lambda / lambda_0 update | 
| .logsumexp | Computes the logarithmic sum of an exponential | 
| .log_likelihood | Log likelihood function | 
| .lprop.dens.beta.NR | log Gaussian proposal density for Newton Raphson proposal | 
| .lprop_density_beta | Log density of proposal for MALA | 
| .ltau_dprior | Calculate log density tau prior | 
| .mu_update | Calculate mu posterior update | 
| .normalize_prob | Normalize a set of probability to one, using the the log-sum-exp trick | 
| .nu_sigma_update | Calculates nu and sigma2 for the Gaussian Markov random field prior, for a given split point j | 
| .plot_hist | Plot histogram from MCMC samples | 
| .plot_matrix | Plot smoothed baseline hazards | 
| .plot_trace | Plot MCMC trace | 
| .predictive_hazard | Predictive hazard from BayesFBHborrow object | 
| .predictive_hazard_ratio | Predictive hazard ratio (HR) from BayesFBHborrow object | 
| .predictive_survival | Predictive survival from BayesFBHborrow object | 
| .set_hyperparameters | Set tuning parameters | 
| .set_tuning_parameters | Set tuning parameters | 
| .shuffle_split_point_location | Metropolis Hastings step: shuffle the split point locations (with Bayesian borrowing) | 
| .shuffle_split_point_location_NoBorrow | Metropolis Hastings step: shuffle the split point locations (without Bayesian borrowing) | 
| .sigma2_update | Calculate sigma2 posterior update | 
| .smooth_hazard | Smoothed hazard function | 
| .smooth_survival | Smoothed survival curve | 
| .tau_update | Sample tau from posterior distribution | 
| BayesFBHborrow | BayesFBHborrow: Run MCMC for a piecewise exponential model | 
| BayesFBHborrow.NoBorrow | Run the MCMC sampler without Bayesian Borrowing | 
| BayesFBHborrow.WBorrow | Run the MCMC sampler with Bayesian Borrowing | 
| coef.BayesFBHborrow | Extract mean posterior values | 
| GibbsMH | S3 generic, calls the correct GibbsMH sampler | 
| GibbsMH.NoBorrow | GibbsMH sampler, without Bayesian Borrowing | 
| GibbsMH.WBorrow | GibbsMH sampler, with Bayesian Borrowing | 
| group_summary | Create group level data | 
| init_lambda_hyperparameters | Initialize lambda hyperparameters | 
| piecewise_exp_cc | Example data, simulated from a piecewise exponential model. | 
| piecewise_exp_hist | Example data, simulated from a piecewise exponential model. | 
| plot.BayesFBHborrow | Plot the MCMC results | 
| summary.BayesFBHborrow | Summarize fixed MCMC results | 
| weibull_cc | Example data, simulated from a Weibull distribution. | 
| weibull_hist | Example data, simulated from a Weibull distribution |